These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3637180)

  • 1. Application of the stoichiometric displacement model of retention to anion-exchange chromatography of nucleic acids.
    Drager RR; Regnier FE
    J Chromatogr; 1986 May; 359():147-55. PubMed ID: 3637180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance liquid chromatography of amino acids, peptides and proteins. LXXXVI. The influence of different displacer salts on the retention and bandwidth properties of proteins separated by isocratic anion-exchange chromatography.
    Hearn MT; Hodder AN; Aguilar MI
    J Chromatogr; 1988 Jun; 443():97-118. PubMed ID: 3170697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on the retention mechanism of solutes in hydrophilic interaction chromatography using stoichiometric displacement theory I. The linear relationship of lgk' vs. lg[H
    Wang F; Yang F; Tian Y; Liu J; Shen J; Bai Q
    Talanta; 2018 Jan; 176():499-508. PubMed ID: 28917782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance liquid chromatography of amino acids, peptides and proteins. LXXXIX. The influence of different displacer salts on the retention properties of proteins separated by gradient anion-exchange chromatography.
    Hodder AN; Aguilar MI; Hearn MT
    J Chromatogr; 1989 Aug; 476():391-411. PubMed ID: 2777987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropellicular stationary phases for high-performance liquid chromatography of double-stranded DNA.
    Huber CG
    J Chromatogr A; 1998 May; 806(1):3-30. PubMed ID: 9639878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid separation of the components of nucleic acids and urine by high-resolution liquid chromatography.
    Burtis AC; Munk MN; MacDonald FR
    Clin Chem; 1970 Aug; 16(8):667-76. PubMed ID: 5474195
    [No Abstract]   [Full Text] [Related]  

  • 7. HPLC in nucleic acids research.
    Thompson JA; Wells RD
    Nature; 1988 Jul; 334(6177):87-8. PubMed ID: 3202921
    [No Abstract]   [Full Text] [Related]  

  • 8. Retention model for proteins in reversed-phase liquid chromatography.
    Geng X; Regnier FE
    J Chromatogr; 1984 Jul; 296():15-30. PubMed ID: 6480740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance anion-exchange chromatography of proteins using aza-ether bonded silica-based phases.
    Miller NT; Shieh CH
    J Chromatogr; 1989 Feb; 463(2):329-44. PubMed ID: 2708487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion-exchange and hydrophobic-interaction high-performance liquid chromatography of proteins. A practical study.
    Josić D; Hofmann W; Reutter W
    J Chromatogr; 1986 Dec; 371():43-54. PubMed ID: 3558556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The synthesis and characterization of chemically bonded silica-based zwitterion-exchangers for HPLC.
    Yu LW; Floyd TR; Hartwick RA
    J Chromatogr Sci; 1986 May; 24(5):177-82. PubMed ID: 3013914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance liquid chromatography of amino acids, peptides and proteins. XCVIII. The influence of different displacer salts on the bandwidth properties of proteins separated by gradient elution anion-exchange chromatography.
    Hodder AN; Aguilar MI; Hearn MT
    J Chromatogr; 1990 Jul; 512():41-56. PubMed ID: 2121764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention mechanism of lactate dehydrogenase in anion-exchange chromatography.
    Drager RR; Regnier FE
    J Chromatogr; 1987 Oct; 406():237-46. PubMed ID: 3680446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of a non-porous, polystyrene-based strong anion-exchange packing material and its application to fast high-performance liquid chromatography of proteins.
    Rounds MA; Regnier FE
    J Chromatogr; 1988 Jun; 443():73-83. PubMed ID: 3170696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cation-exclusion chromatography on anion exchangers: application to nucleic acid components and comparison with anion-exchange chromatography.
    Singhal RP; Cohn WE
    Biochemistry; 1973 Apr; 12(8):1532-7. PubMed ID: 4573198
    [No Abstract]   [Full Text] [Related]  

  • 16. Chromatography of proteins on hydrophobic interaction and ion-exchange chromatographic matrices: mobile phase contributions to selectivity.
    Heinitz ML; Kennedy L; Kopaciewicz W; Regnier FE
    J Chromatogr; 1988 Jun; 443():173-82. PubMed ID: 3170685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New monolith technology for automated anion-exchange purification of nucleic acids.
    Thayer JR; Flook KJ; Woodruff A; Rao S; Pohl CA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Apr; 878(13-14):933-41. PubMed ID: 20226746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-mediated retention effects of subtilisin site-specific variants in cation-exchange chromatography.
    Chicz RM; Regnier FE
    J Chromatogr; 1988 Jun; 443():193-203. PubMed ID: 3049647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion-exchange high-performance liquid chromatography of nucleotides and polypeptides on new types of ion-exchange sorbents, based on polystyrene-coated silicas.
    Kurganov AA; Davankov VA; Unger KK
    J Chromatogr; 1991 Jul; 548(1-2):207-14. PubMed ID: 1658021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular orientation of immunoglobulin G at high concentration on an ion-exchange sorbent.
    Mazsaroff I; Cook S; Regnier FE
    J Chromatogr; 1988 Jun; 443():119-31. PubMed ID: 3170682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.