These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36371840)

  • 1. Detection of wheat toxigenic Aspergillus flavus based on nano-composite colorimetric sensing technology.
    Lin H; Wang F; Lin J; Yang W; Kang W; Jiang H; Adade SYS; Cai J; Xue Z; Chen Q
    Food Chem; 2023 Mar; 405(Pt A):134803. PubMed ID: 36371840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of toxigenic and non-toxigenic Aspergillus flavus in wheat based on nanocomposite colorimetric sensor array.
    Chen Z; Lin H; Wang F; Adade SYS; Peng T; Chen Q
    Food Chem; 2024 Jan; 430():137048. PubMed ID: 37544158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of colony number in mouldy wheat based on near infrared spectroscopy combined with colorimetric sensor.
    Lin H; Kang W; Han E; Chen Q
    Food Chem; 2021 Aug; 354():129545. PubMed ID: 33756335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Maize Mold Based on a Nanocomposite Colorimetric Sensor Array under Different Substrates.
    Lin H; Chen Z; Solomon Adade SY; Yang W; Chen Q
    J Agric Food Chem; 2024 May; 72(19):11164-11173. PubMed ID: 38564679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel colorimetric sensor array based on boron-dipyrromethene dyes for monitoring the storage time of rice.
    Lin H; Man ZX; Kang WC; Guan BB; Chen QS; Xue ZL
    Food Chem; 2018 Dec; 268():300-306. PubMed ID: 30064762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Volatile Organic Compounds on the Growth of
    Josselin L; De Clerck C; De Boevre M; Moretti A; Fauconnier ML
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volatile profiles of toxigenic and non-toxigenic Aspergillus flavus using SPME for solid phase extraction.
    De Lucca AJ; Boué SM; Carter-Wientjes CH; Bland JM; Bhatnagar D; Cleveland TE
    Ann Agric Environ Med; 2010; 17(2):301-8. PubMed ID: 21186773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocontrol activity of volatile organic compounds from Streptomyces alboflavus TD-1 against Aspergillus flavus growth and aflatoxin production.
    Yang M; Lu L; Pang J; Hu Y; Guo Q; Li Z; Wu S; Liu H; Wang C
    J Microbiol; 2019 May; 57(5):396-404. PubMed ID: 31062286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cumulative Effects of Non-Aflatoxigenic
    Moore GG; Lebar MD; Carter-Wientjes CH
    Toxins (Basel); 2022 May; 14(5):. PubMed ID: 35622587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Volatile profiles and aflatoxin production by toxigenic and non-toxigenic isolates of Aspergillus flavus grown on sterile and non-sterile cracked corn.
    De Lucca AJ; Boue SM; Carter-Wientjes C; Bhatnagar D
    Ann Agric Environ Med; 2012; 19(1):91-8. PubMed ID: 22462452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of toxigenic Aspergillus spp. in dried figs by volatile organic compounds (VOCs) from antagonistic yeasts.
    Galván AI; Hernández A; Córdoba MG; Martín A; Serradilla MJ; López-Corrales M; Rodríguez A
    Int J Food Microbiol; 2022 Sep; 376():109772. PubMed ID: 35667262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Vitro Biological Control of
    Tejero P; Martín A; Rodríguez A; Galván AI; Ruiz-Moyano S; Hernández A
    Toxins (Basel); 2021 Sep; 13(9):. PubMed ID: 34564667
    [No Abstract]   [Full Text] [Related]  

  • 13. Eye-Readable and Wearable Colorimetric Sensor Arrays for
    You Z; Zhao M; Lu H; Chen H; Wang Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19359-19368. PubMed ID: 38568140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of colorimetric sensor array coupled with machine-learning approaches for the discrimination of grains based on freshness.
    Liang Y; Lin H; Kang W; Shao X; Cai J; Li H; Chen Q
    J Sci Food Agric; 2023 Nov; 103(14):6790-6799. PubMed ID: 37308777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual culture of atoxigenic and toxigenic strains of Aspergillus flavus to gain insight into repression of aflatoxin biosynthesis and fungal interaction.
    Hua SST; Parfitt DE; Sarreal SBL; Sidhu G
    Mycotoxin Res; 2019 Nov; 35(4):381-389. PubMed ID: 31161589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aspergillus flavus contamination in two Portuguese wastewater treatment plants.
    Viegas C; Dias R; Gomes AQ; Meneses M; Sabino R; Viegas S
    J Toxicol Environ Health A; 2014; 77(14-16):796-805. PubMed ID: 25072712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic diversity of environmental Aspergillus flavus strains in the state of São Paulo, Brazil by random amplified polymorphic DNA.
    Lourenço A; Durigon EL; Zanotto P; Cruz Madeira JE; De Almeida AP; Correa B
    Mem Inst Oswaldo Cruz; 2007 Sep; 102(6):687-92. PubMed ID: 17923996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A versatile nanozyme integrated colorimetric and photothermal lateral flow immunoassay for highly sensitive and reliable Aspergillus flavus detection.
    Liang M; Cai X; Gao Y; Yan H; Fu J; Tang X; Zhang Q; Li P
    Biosens Bioelectron; 2022 Oct; 213():114435. PubMed ID: 35679645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A study on the pectinase-producing abilities of Aspergillus flavus in grain of Zhejiang Province].
    Wang ZG; Tong Z; Cheng SY
    Zhonghua Yu Fang Yi Xue Za Zhi; 1994 Jan; 28(1):31-3. PubMed ID: 8082458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Dynamics of B1 aflatoxin and Aspergillus flavus spore formation on rye and wheat grain].
    Boltianskaia EV
    Prikl Biokhim Mikrobiol; 1979; 15(5):682-5. PubMed ID: 117447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.