These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36372148)

  • 1. Electrodeionization: Principle, techniques and factors influencing its performance.
    Senthil Kumar P; Varsha M; Senthil Rathi B; Rangasamy G
    Environ Res; 2023 Jan; 216(Pt 4):114756. PubMed ID: 36372148
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on recent advances in electrodeionization for various environmental applications.
    Rathi BS; Kumar PS; Parthiban R
    Chemosphere; 2022 Feb; 289():133223. PubMed ID: 34896170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New outlook on hazardous pollutants in the wastewater environment: Occurrence, risk assessment and elimination by electrodeionization technologies.
    Mistry G; Popat K; Patel J; Panchal K; Ngo HH; Bilal M; Varjani S
    Environ Res; 2023 Feb; 219():115112. PubMed ID: 36574803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on stack configuration of continuous electrodeionization for removal of heavy metal ions from the primary coolant of a nuclear power plant.
    Yeon KH; Song JH; Moon SH
    Water Res; 2004 Apr; 38(7):1911-21. PubMed ID: 15026246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous removal of organics and heavy metals from industrial wastewater: A review.
    Ajiboye TO; Oyewo OA; Onwudiwe DC
    Chemosphere; 2021 Jan; 262():128379. PubMed ID: 33182079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treatment of electroplating industry wastewater: a review on the various techniques.
    Rajoria S; Vashishtha M; Sangal VK
    Environ Sci Pollut Res Int; 2022 Oct; 29(48):72196-72246. PubMed ID: 35084684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on biofiltration techniques: recent advancements in the removal of volatile organic compounds and heavy metals in the treatment of polluted water.
    Pachaiappan R; Cornejo-Ponce L; Rajendran R; Manavalan K; Femilaa Rajan V; Awad F
    Bioengineered; 2022 Apr; 13(4):8432-8477. PubMed ID: 35260028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous electrodeionization on the removal of toxic pollutant from aqueous solution.
    Rathi BS; Kumar PS
    Chemosphere; 2022 Mar; 291(Pt 1):132808. PubMed ID: 34762876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.
    Mahmoud A; Hoadley AF
    Water Res; 2012 Jun; 46(10):3364-76. PubMed ID: 22503588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on the Use of Heavy Metal Deposits from Water Treatment Waste towards Catalytic Chemical Syntheses.
    Das TK; Poater A
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New trends in removing heavy metals from wastewater.
    Zhao M; Xu Y; Zhang C; Rong H; Zeng G
    Appl Microbiol Biotechnol; 2016 Aug; 100(15):6509-6518. PubMed ID: 27318819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermally synthesized titanate nanomaterials for the removal of heavy metals and radionuclides from water: A review.
    Li H; Huang Y; Liu J; Duan H
    Chemosphere; 2021 Nov; 282():131046. PubMed ID: 34102493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treatment of low-level Cu(II) wastewater and regeneration through a novel capacitive deionization-electrodeionization (CDI-EDI) technology.
    Zhao C; Zhang L; Ge R; Zhang A; Zhang C; Chen X
    Chemosphere; 2019 Feb; 217():763-772. PubMed ID: 30448756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil palm biomass as an adsorbent for heavy metals.
    Vakili M; Rafatullah M; Ibrahim MH; Abdullah AZ; Salamatinia B; Gholami Z
    Rev Environ Contam Toxicol; 2014; 232():61-88. PubMed ID: 24984835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein nanofibrils as versatile and sustainable adsorbents for an effective removal of heavy metals from wastewater: A review.
    Vinayagam V; Murugan S; Kumaresan R; Narayanan M; Sillanpää M; Vo DN; Kushwaha OS
    Chemosphere; 2022 Aug; 301():134635. PubMed ID: 35447212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review on sources of heavy metals, their toxicity and removal technique using physico-chemical processes from wastewater.
    Rafique M; Hajra S; Tahir MB; Gillani SSA; Irshad M
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):16772-16781. PubMed ID: 35041164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Review on Polyacrylonitrile as an Effective and Economic Constituent of Adsorbents for Wastewater Treatment.
    Gupta A; Sharma V; Mishra PK; Ekielski A
    Molecules; 2022 Dec; 27(24):. PubMed ID: 36557823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion exchange extraction of heavy metals from wastewater sludges.
    Al-Enezi G; Hamoda MF; Fawzi N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(2):455-64. PubMed ID: 15027828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of polymeric sub-micron ion-exchange resins for removal of lead, copper, zinc, and nickel from natural waters.
    Murray A; Örmeci B
    J Environ Sci (China); 2019 Jan; 75():247-254. PubMed ID: 30473290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined ultrafiltration-electrodeionization technique for production of high purity water.
    Wardani AK; Hakim AN; Khoiruddin ; Wenten IG
    Water Sci Technol; 2017 Jun; 75(12):2891-2899. PubMed ID: 28659529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.