These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 36372816)
1. mRNA levels of tricarboxylic acid cycle genes in Streptomyces coelicolor M145 cultured on glucose. Takahashi-Iñiguez T; Flores ME Mol Biol Rep; 2023 Jan; 50(1):719-730. PubMed ID: 36372816 [TBL] [Abstract][Full Text] [Related]
2. The phosphoenolpyruvate-pyruvate-oxaloacetate node genes and enzymes in Streptomyces coelicolor M-145. Llamas-Ramírez R; Takahashi-Iñiguez T; Flores ME Int Microbiol; 2020 Aug; 23(3):429-439. PubMed ID: 31900743 [TBL] [Abstract][Full Text] [Related]
3. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145. Takahashi-Íñiguez T; Barrios-Hernández J; Rodríguez-Maldonado M; Flores ME Arch Microbiol; 2018 Nov; 200(9):1279-1286. PubMed ID: 29936645 [TBL] [Abstract][Full Text] [Related]
4. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor. Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083 [TBL] [Abstract][Full Text] [Related]
5. Initial Metabolic Step of a Novel Ethanolamine Utilization Pathway and Its Regulation in Krysenko S; Matthews A; Okoniewski N; Kulik A; Girbas MG; Tsypik O; Meyners CS; Hausch F; Wohlleben W; Bera A mBio; 2019 May; 10(3):. PubMed ID: 31113893 [No Abstract] [Full Text] [Related]
6. Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane. Gallo G; Lo Piccolo L; Renzone G; La Rosa R; Scaloni A; Quatrini P; Puglia AM Appl Microbiol Biotechnol; 2012 Jun; 94(5):1289-301. PubMed ID: 22526801 [TBL] [Abstract][Full Text] [Related]
7. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in Jin XM; Chang YK; Lee JH; Hong SK J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222 [TBL] [Abstract][Full Text] [Related]
8. Identification of glucose kinase-dependent and -independent pathways for carbon control of primary metabolism, development and antibiotic production in Streptomyces coelicolor by quantitative proteomics. Gubbens J; Janus MM; Florea BI; Overkleeft HS; van Wezel GP Mol Microbiol; 2012 Dec; 86(6):1490-507. PubMed ID: 23078239 [TBL] [Abstract][Full Text] [Related]
9. Allantoin catabolism influences the production of antibiotics in Streptomyces coelicolor. Navone L; Casati P; Licona-Cassani C; Marcellin E; Nielsen LK; Rodriguez E; Gramajo H Appl Microbiol Biotechnol; 2014 Jan; 98(1):351-60. PubMed ID: 24292080 [TBL] [Abstract][Full Text] [Related]
10. Optimized submerged batch fermentation strategy for systems scale studies of metabolic switching in Streptomyces coelicolor A3(2). Wentzel A; Bruheim P; Øverby A; Jakobsen ØM; Sletta H; Omara WA; Hodgson DA; Ellingsen TE BMC Syst Biol; 2012 Jun; 6():59. PubMed ID: 22676814 [TBL] [Abstract][Full Text] [Related]
11. Crp is a global regulator of antibiotic production in streptomyces. Gao C; Hindra ; Mulder D; Yin C; Elliot MA mBio; 2012 Dec; 3(6):. PubMed ID: 23232715 [TBL] [Abstract][Full Text] [Related]
12. Genome-Wide Mutagenesis Links Multiple Metabolic Pathways with Actinorhodin Production in Streptomyces coelicolor. Xu Z; Li Y; Wang Y; Deng Z; Tao M Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709825 [No Abstract] [Full Text] [Related]
13. Metabolic and evolutionary insights into the closely-related species Streptomyces coelicolor and Streptomyces lividans deduced from high-resolution comparative genomic hybridization. Lewis RA; Laing E; Allenby N; Bucca G; Brenner V; Harrison M; Kierzek AM; Smith CP BMC Genomics; 2010 Dec; 11():682. PubMed ID: 21122120 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis of an antibiotic downregulator mutant and synergistic Actinorhodin stimulation via disruption of a precursor flux regulator in Streptomyces coelicolor. Kim SH; Lee HN; Kim HJ; Kim ES Appl Environ Microbiol; 2011 Mar; 77(5):1872-7. PubMed ID: 21216912 [TBL] [Abstract][Full Text] [Related]
15. Transcriptomic analysis of lignocellulose degradation by Streptomyces coelicolor A3(2) and elicitation of secondary metabolites production. Besaury L; Fromentin J; Detain J; Rodrigues CM; Harakat D; Rémond C FEMS Microbiol Lett; 2022 Nov; 369(1):. PubMed ID: 36302146 [TBL] [Abstract][Full Text] [Related]
16. Tryptophan catabolism via kynurenine production in Streptomyces coelicolor: identification of three genes coding for the enzymes of tryptophan to anthranilate pathway. Zummo FP; Marineo S; Pace A; Civiletti F; Giardina A; Puglia AM Appl Microbiol Biotechnol; 2012 May; 94(3):719-28. PubMed ID: 22234533 [TBL] [Abstract][Full Text] [Related]
17. Cloning and expression of the sco2127 gene from Streptomyces coelicolor M145. Chávez A; García-Huante Y; Ruiz B; Langley E; Rodríguez-Sanoja R; Sanchez S J Ind Microbiol Biotechnol; 2009 May; 36(5):649-54. PubMed ID: 19212786 [TBL] [Abstract][Full Text] [Related]
18. Nitric Oxide Signaling for Aerial Mycelium Formation in Streptomyces coelicolor A3(2) M145. Honma S; Ito S; Yajima S; Sasaki Y Appl Environ Microbiol; 2022 Dec; 88(23):e0122222. PubMed ID: 36354316 [TBL] [Abstract][Full Text] [Related]
19. Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146. Coze F; Gilard F; Tcherkez G; Virolle MJ; Guyonvarch A PLoS One; 2013; 8(12):e84151. PubMed ID: 24376790 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the effects of actinorhodin biosynthetic gene cluster expression and a rpoB point mutation on the metabolome of Streptomyces coelicolor M1146. Nitta K; Breitling R; Takano E; Putri SP; Fukusaki E J Biosci Bioeng; 2021 May; 131(5):525-536. PubMed ID: 33549493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]