These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36372991)

  • 1. Functionalized electrodes embedded in nanopores: read-out enhancement?
    Fyta M
    Chem Asian J; 2023 Jan; 18(1):e202200916. PubMed ID: 36372991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diamondoid-functionalized gold nanogaps as sensors for natural, mutated, and epigenetically modified DNA nucleotides.
    Sivaraman G; Amorim RG; Scheicher RH; Fyta M
    Nanoscale; 2016 May; 8(19):10105-12. PubMed ID: 27121677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark investigation of diamondoid-functionalized electrodes for nanopore DNA sequencing.
    Sivaraman G; Amorim RG; Scheicher RH; Fyta M
    Nanotechnology; 2016 Oct; 27(41):414002. PubMed ID: 27607107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functionalized Nanogap for DNA Read-Out: Nucleotide Rotation and Current-Voltage Curves.
    Maier FC; Fyta M
    Chemphyschem; 2020 Sep; 21(18):2068-2074. PubMed ID: 32721095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of DNA nucleotides by conductance and tunnelling current variation through borophene nanogaps.
    Jena MK; Pathak B
    Phys Chem Chem Phys; 2022 Sep; 24(35):21427-21439. PubMed ID: 36047510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Single-Stranded DNA by Tuning the Graphene Nanogap Size: An Ionic Current Approach.
    Kumawat RL; Pathak B
    J Phys Chem B; 2022 Feb; 126(6):1178-1187. PubMed ID: 35108006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of a solvent on the electronic transport across diamondoid-functionalized biosensing electrodes.
    Dou M; Maier FC; Fyta M
    Nanoscale; 2019 Aug; 11(30):14216-14225. PubMed ID: 31317158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slowing and controlling the translocation of DNA in a solid-state nanopore.
    Luan B; Stolovitzky G; Martyna G
    Nanoscale; 2012 Feb; 4(4):1068-77. PubMed ID: 22081018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of nanopores with insulated transverse nanoelectrodes for DNA sensing in salt solution.
    Healy K; Ray V; Willis LJ; Peterman N; Bartel J; Drndić M
    Electrophoresis; 2012 Dec; 33(23):3488-96. PubMed ID: 23161707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electronic analysis of hydrogen-bonded molecular complexes: the case of DNA sensed in a functionalized nanogap.
    Maier FC; Fyta M
    RSC Adv; 2023 Jan; 13(4):2530-2537. PubMed ID: 36741157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA Nanopore-Tethered Gold Needle Electrodes for Channel Current Recording.
    Ikarashi S; Akai H; Koiwa H; Izawa Y; Takahashi J; Mabuchi T; Shoji K
    ACS Nano; 2023 Jun; 17(11):10598-10607. PubMed ID: 37222595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recognition Tunneling of Canonical and Modified RNA Nucleotides for Their Identification with the Aid of Machine Learning.
    Im J; Sen S; Lindsay S; Zhang P
    ACS Nano; 2018 Jul; 12(7):7067-7075. PubMed ID: 29932668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized carbon nanotube electrodes for controlled DNA sequencing.
    Kumawat RL; Pathak B
    Nanoscale Adv; 2020 Sep; 2(9):4041-4050. PubMed ID: 36132799
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales.
    Bai J; Wang D; Nam SW; Peng H; Bruce R; Gignac L; Brink M; Kratschmer E; Rossnagel S; Waggoner P; Reuter K; Wang C; Astier Y; Balagurusamy V; Luan B; Kwark Y; Joseph E; Guillorn M; Polonsky S; Royyuru A; Papa Rao S; Stolovitzky G
    Nanoscale; 2014 Aug; 6(15):8900-6. PubMed ID: 24964839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Transport through DNA Nucleotides in Atomically Thin Phosphorene Electrodes for Rapid DNA Sequencing.
    Kumawat RL; Garg P; Kumar S; Pathak B
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):219-225. PubMed ID: 30540178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of single-stranded DNA homopolymers by sieving out G-quadruplex using tiny solid-state nanopores.
    Si W; Yang H; Sha J; Zhang Y; Chen Y
    Electrophoresis; 2019 Aug; 40(16-17):2117-2124. PubMed ID: 30779188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopore chip with self-aligned transverse tunneling junction for DNA detection.
    Wang Y; Sadar J; Tsao CW; Mukherjee S; Qing Q
    Biosens Bioelectron; 2021 Dec; 193():113552. PubMed ID: 34416434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threading DNA through nanopores for biosensing applications.
    Fyta M
    J Phys Condens Matter; 2015 Jul; 27(27):273101. PubMed ID: 26061408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array.
    Fuller CW; Kumar S; Porel M; Chien M; Bibillo A; Stranges PB; Dorwart M; Tao C; Li Z; Guo W; Shi S; Korenblum D; Trans A; Aguirre A; Liu E; Harada ET; Pollard J; Bhat A; Cech C; Yang A; Arnold C; Palla M; Hovis J; Chen R; Morozova I; Kalachikov S; Russo JJ; Kasianowicz JJ; Davis R; Roever S; Church GM; Ju J
    Proc Natl Acad Sci U S A; 2016 May; 113(19):5233-8. PubMed ID: 27091962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA translocations through solid-state plasmonic nanopores.
    Nicoli F; Verschueren D; Klein M; Dekker C; Jonsson MP
    Nano Lett; 2014 Dec; 14(12):6917-25. PubMed ID: 25347403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.