These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 36372992)
1. Phenological physiology: seasonal patterns of plant stress tolerance in a changing climate. Grossman JJ New Phytol; 2023 Mar; 237(5):1508-1524. PubMed ID: 36372992 [TBL] [Abstract][Full Text] [Related]
2. Woody species do not differ in dormancy progression: Differences in time to budbreak due to forcing and cold hardiness. Kovaleski AP Proc Natl Acad Sci U S A; 2022 May; 119(19):e2112250119. PubMed ID: 35500120 [TBL] [Abstract][Full Text] [Related]
3. Winter survival and deacclimation of perennials under warming climate: physiological perspectives. Pagter M; Arora R Physiol Plant; 2013 Jan; 147(1):75-87. PubMed ID: 22583023 [TBL] [Abstract][Full Text] [Related]
4. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness. Pagter M; Jensen CR; Petersen KK; Liu F; Arora R Physiol Plant; 2008 Nov; 134(3):473-85. PubMed ID: 18636985 [TBL] [Abstract][Full Text] [Related]
5. Dynamic modelling of cold-hardiness in tea buds by imitating past temperature memory. Kimura K; Yasutake D; Oki T; Yoshida K; Kitano M Ann Bot; 2021 Feb; 127(3):317-326. PubMed ID: 33247901 [TBL] [Abstract][Full Text] [Related]
6. Effects of chill unit accumulation and temperature on woody plant deacclimation kinetics. North M; Workmaster BA; Atucha A Physiol Plant; 2022 May; 174(3):e13717. PubMed ID: 35592923 [TBL] [Abstract][Full Text] [Related]
7. Deacclimation after cold acclimation-a crucial, but widely neglected part of plant winter survival. Vyse K; Pagter M; Zuther E; Hincha DK J Exp Bot; 2019 Sep; 70(18):4595-4604. PubMed ID: 31087096 [TBL] [Abstract][Full Text] [Related]
8. Is a seasonally reduced growth potential a convergent strategy to survive drought and frost in plants? Volaire F; Barkaoui K; Grémillet D; Charrier G; Dangles O; Lamarque LJ; Martin-StPaul N; Chuine I Ann Bot; 2023 Mar; 131(2):245-254. PubMed ID: 36567631 [TBL] [Abstract][Full Text] [Related]
9. Comparative analysis of the cold acclimation and freezing tolerance capacities of seven diploid Brachypodium distachyon accessions. Colton-Gagnon K; Ali-Benali MA; Mayer BF; Dionne R; Bertrand A; Do Carmo S; Charron JB Ann Bot; 2014 Mar; 113(4):681-93. PubMed ID: 24323247 [TBL] [Abstract][Full Text] [Related]
10. Life-history correlations with seasonal cold hardiness in maritime pine. Prada E; Climent J; Alía R; Díaz R Am J Bot; 2016 Dec; 103(12):2126-2135. PubMed ID: 27999078 [TBL] [Abstract][Full Text] [Related]
11. The potential for an increasing threat of unseasonal temperature cycles to dormant plants. Kovaleski AP New Phytol; 2024 Oct; 244(2):377-383. PubMed ID: 39152704 [TBL] [Abstract][Full Text] [Related]
13. Are winter and summer dormancy symmetrical seasonal adaptive strategies? The case of temperate herbaceous perennials. Gillespie LM; Volaire FA Ann Bot; 2017 Feb; 119(3):311-323. PubMed ID: 28087658 [TBL] [Abstract][Full Text] [Related]
14. Time to budbreak is not enough: cold hardiness evaluation is necessary in dormancy and spring phenology studies. North MG; Kovaleski AP Ann Bot; 2024 Apr; 133(2):217-224. PubMed ID: 37971306 [TBL] [Abstract][Full Text] [Related]
15. Acclimation to water stress improves tolerance to heat and freezing in a common alpine grass. Sumner EE; Williamson VG; Gleadow RM; Wevill T; Venn SE Oecologia; 2022 Aug; 199(4):831-843. PubMed ID: 35974110 [TBL] [Abstract][Full Text] [Related]
16. Temperate woody species across the angiosperm phylogeny acquire tolerance to water deficit stress during the growing season. Grossman JJ; Coe HB; Fey O; Fraser N; Salaam M; Semper C; Williamson CG New Phytol; 2024 Jun; 242(5):1981-1995. PubMed ID: 38511237 [TBL] [Abstract][Full Text] [Related]
17. Deacclimation may be crucial for winter survival of cereals under warming climate. Rapacz M; Jurczyk B; Sasal M Plant Sci; 2017 Mar; 256():5-15. PubMed ID: 28167038 [TBL] [Abstract][Full Text] [Related]
18. Cold acclimation by the CBF-COR pathway in a changing climate: Lessons from Arabidopsis thaliana. Liu Y; Dang P; Liu L; He C Plant Cell Rep; 2019 May; 38(5):511-519. PubMed ID: 30652229 [TBL] [Abstract][Full Text] [Related]
19. Freezing tolerance revisited-effects of variable temperatures on gene regulation in temperate grasses and legumes. Kovi MR; Ergon Å; Rognli OA Curr Opin Plant Biol; 2016 Oct; 33():140-146. PubMed ID: 27479037 [TBL] [Abstract][Full Text] [Related]