BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36373326)

  • 1. Structural basis of the key residue W320 responsible for Hsp90 conformational change.
    Peng S; Matts RL; Deng J
    J Biomol Struct Dyn; 2023 Nov; 41(19):9745-9755. PubMed ID: 36373326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and mechanism of the Hsp90 molecular chaperone machinery.
    Pearl LH; Prodromou C
    Annu Rev Biochem; 2006; 75():271-94. PubMed ID: 16756493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stimulation of the weak ATPase activity of human hsp90 by a client protein.
    McLaughlin SH; Smith HW; Jackson SE
    J Mol Biol; 2002 Jan; 315(4):787-98. PubMed ID: 11812147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex.
    Ali MM; Roe SM; Vaughan CK; Meyer P; Panaretou B; Piper PW; Prodromou C; Pearl LH
    Nature; 2006 Apr; 440(7087):1013-7. PubMed ID: 16625188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Allosteric regulation of the Hsp90 dynamics and stability by client recruiter cochaperones: protein structure network modeling.
    Blacklock K; Verkhivker GM
    PLoS One; 2014; 9(1):e86547. PubMed ID: 24466147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics-based community analysis and perturbation response scanning of allosteric interaction networks in the TRAP1 chaperone structures dissect molecular linkage between conformational asymmetry and sequential ATP hydrolysis.
    Verkhivker GM
    Biochim Biophys Acta Proteins Proteom; 2018 Aug; 1866(8):899-912. PubMed ID: 29684503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The hexameric structures of human heat shock protein 90.
    Lee CC; Lin TW; Ko TP; Wang AH
    PLoS One; 2011; 6(5):e19961. PubMed ID: 21647436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of the middle and C-terminal domains of Hsp90α labeled with a coumarin derivative reveals a potential allosteric binding site as a drug target.
    Peng S; Woodruff J; Pathak PK; Matts RL; Deng J
    Acta Crystallogr D Struct Biol; 2022 May; 78(Pt 5):571-585. PubMed ID: 35503206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Mechanisms of Allosteric Regulation and Communication Switching in the Multiprotein Regulatory Complexes of the Hsp90 Chaperone with Cochaperones and Client Proteins: Atomistic Insights from Integrative Biophysical Modeling and Network Analysis of Conformational Landscapes.
    Verkhivker GM
    J Mol Biol; 2022 Sep; 434(17):167506. PubMed ID: 35202628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle.
    Siligardi G; Hu B; Panaretou B; Piper PW; Pearl LH; Prodromou C
    J Biol Chem; 2004 Dec; 279(50):51989-98. PubMed ID: 15466438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.
    Blacklock K; Verkhivker GM
    PLoS Comput Biol; 2014 Jun; 10(6):e1003679. PubMed ID: 24922508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Hsp90 chaperone machinery: conformational dynamics and regulation by co-chaperones.
    Li J; Soroka J; Buchner J
    Biochim Biophys Acta; 2012 Mar; 1823(3):624-35. PubMed ID: 21951723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cross-monomer substrate contacts reposition the Hsp90 N-terminal domain and prime the chaperone activity.
    Street TO; Lavery LA; Verba KA; Lee CT; Mayer MP; Agard DA
    J Mol Biol; 2012 Jan; 415(1):3-15. PubMed ID: 22063096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The co-chaperone p23 arrests the Hsp90 ATPase cycle to trap client proteins.
    McLaughlin SH; Sobott F; Yao ZP; Zhang W; Nielsen PR; Grossmann JG; Laue ED; Robinson CV; Jackson SE
    J Mol Biol; 2006 Feb; 356(3):746-58. PubMed ID: 16403413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human Hsp90 cochaperones: perspectives on tissue-specific expression and identification of cochaperones with similar in vivo functions.
    Dean ME; Johnson JL
    Cell Stress Chaperones; 2021 Jan; 26(1):3-13. PubMed ID: 33037995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Asymmetry in Hsp90 Dimers.
    Flynn JM; Mishra P; Bolon DN
    J Mol Biol; 2015 Sep; 427(18):2904-11. PubMed ID: 25843003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATPase activity and ATP-dependent conformational change in the co-chaperone HSP70/HSP90-organizing protein (HOP).
    Yamamoto S; Subedi GP; Hanashima S; Satoh T; Otaka M; Wakui H; Sawada K; Yokota S; Yamaguchi Y; Kubota H; Itoh H
    J Biol Chem; 2014 Apr; 289(14):9880-6. PubMed ID: 24535459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The HSP90 chaperone machinery.
    Schopf FH; Biebl MM; Buchner J
    Nat Rev Mol Cell Biol; 2017 Jun; 18(6):345-360. PubMed ID: 28429788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal residues regulate the catalytic efficiency of the Hsp90 ATPase cycle.
    Richter K; Reinstein J; Buchner J
    J Biol Chem; 2002 Nov; 277(47):44905-10. PubMed ID: 12235160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Independent ATPase activity of Hsp90 subunits creates a flexible assembly platform.
    McLaughlin SH; Ventouras LA; Lobbezoo B; Jackson SE
    J Mol Biol; 2004 Nov; 344(3):813-26. PubMed ID: 15533447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.