These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36373561)

  • 1. Position of meristems and the angles of the cell division plane regulate the uniqueness of lateral organ shape.
    Kinoshita A; Naito M; Wang Z; Inoue Y; Mochizuki A; Tsukaya H
    Development; 2022 Dec; 149(23):. PubMed ID: 36373561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of organ patterning on the floral meristem using a polar auxin transport model.
    van Mourik S; Kaufmann K; van Dijk AD; Angenent GC; Merks RM; Molenaar J
    PLoS One; 2012; 7(1):e28762. PubMed ID: 22291882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auxin regulates the initiation and radial position of plant lateral organs.
    Reinhardt D; Mandel T; Kuhlemeier C
    Plant Cell; 2000 Apr; 12(4):507-18. PubMed ID: 10760240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Arabidopsis GRF-INTERACTING FACTOR gene family performs an overlapping function in determining organ size as well as multiple developmental properties.
    Lee BH; Ko JH; Lee S; Lee Y; Pak JH; Kim JH
    Plant Physiol; 2009 Oct; 151(2):655-68. PubMed ID: 19648231
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ERECTA family genes regulate auxin transport in the shoot apical meristem and forming leaf primordia.
    Chen MK; Wilson RL; Palme K; Ditengou FA; Shpak ED
    Plant Physiol; 2013 Aug; 162(4):1978-91. PubMed ID: 23821653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of phyllotaxis by polar auxin transport.
    Reinhardt D; Pesce ER; Stieger P; Mandel T; Baltensperger K; Bennett M; Traas J; Friml J; Kuhlemeier C
    Nature; 2003 Nov; 426(6964):255-60. PubMed ID: 14628043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arabidopsis JAGGED LATERAL ORGANS acts with ASYMMETRIC LEAVES2 to coordinate KNOX and PIN expression in shoot and root meristems.
    Rast MI; Simon R
    Plant Cell; 2012 Jul; 24(7):2917-33. PubMed ID: 22822207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AINTEGUMENTA and AINTEGUMENTA-LIKE6 act redundantly to regulate Arabidopsis floral growth and patterning.
    Krizek B
    Plant Physiol; 2009 Aug; 150(4):1916-29. PubMed ID: 19542297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylserine synthase 1 is required for inflorescence meristem and organ development in Arabidopsis.
    Liu C; Yin H; Gao P; Hu X; Yang J; Liu Z; Fu X; Luo D
    J Integr Plant Biol; 2013 Aug; 55(8):682-95. PubMed ID: 23931744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple MONOPTEROS-dependent pathways are involved in leaf initiation.
    Schuetz M; Berleth T; Mattsson J
    Plant Physiol; 2008 Oct; 148(2):870-80. PubMed ID: 18685044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential growth dynamics control aerial organ geometry.
    Peng Z; Alique D; Xiong Y; Hu J; Cao X; Lü S; Long M; Wang Y; Wabnik K; Jiao Y
    Curr Biol; 2022 Nov; 32(22):4854-4868.e5. PubMed ID: 36272403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dysfunctional mitochondria regulate the size of root apical meristem and leaf development in Arabidopsis.
    Hsieh WY; Liao JC; Hsieh MH
    Plant Signal Behav; 2015; 10(10):e1071002. PubMed ID: 26237004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutation of the cytosolic ribosomal protein-encoding RPS10B gene affects shoot meristematic function in Arabidopsis.
    Stirnberg P; Liu JP; Ward S; Kendall SL; Leyser O
    BMC Plant Biol; 2012 Sep; 12():160. PubMed ID: 22963533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.
    Mudgil Y; Ghawana S; Jones AM
    PLoS One; 2013; 8(11):e77863. PubMed ID: 24223735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable establishment of cotyledon identity during embryogenesis in Arabidopsis by ANGUSTIFOLIA3 and HANABA TARANU.
    Kanei M; Horiguchi G; Tsukaya H
    Development; 2012 Jul; 139(13):2436-46. PubMed ID: 22669825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of auxin sensing in leaf primordia argues against proposed role in regulating leaf dorsoventrality.
    Bhatia N; Åhl H; Jönsson H; Heisler MG
    Elife; 2019 Jan; 8():. PubMed ID: 30667357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active suppression of a leaf meristem orchestrates determinate leaf growth.
    Alvarez JP; Furumizu C; Efroni I; Eshed Y; Bowman JL
    Elife; 2016 Oct; 5():. PubMed ID: 27710768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth.
    Mohammed B; Bilooei SF; Dóczi R; Grove E; Railo S; Palme K; Ditengou FA; Bögre L; López-Juez E
    Plant Physiol; 2018 Feb; 176(2):1365-1381. PubMed ID: 29284741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport.
    Cui D; Zhao J; Jing Y; Fan M; Liu J; Wang Z; Xin W; Hu Y
    PLoS Genet; 2013; 9(9):e1003759. PubMed ID: 24039602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem.
    Heisler MG; Ohno C; Das P; Sieber P; Reddy GV; Long JA; Meyerowitz EM
    Curr Biol; 2005 Nov; 15(21):1899-911. PubMed ID: 16271866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.