BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36373577)

  • 1. The Impact of Adhesions on Nasal Airflow: A Quantitative Analysis Using Computational Fluid Dynamics.
    Senanayake P; Warfield-McAlpine P; Salati H; Bradshaw K; Wong E; Inthavong K; Singh N
    Am J Rhinol Allergy; 2023 May; 37(3):273-283. PubMed ID: 36373577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of nasal adhesions on airflow and mucosal cooling - A computational fluid dynamics analysis.
    Senanayake P; Salati H; Wong E; Bradshaw K; Shang Y; Singh N; Inthavong K
    Respir Physiol Neurobiol; 2021 Nov; 293():103719. PubMed ID: 34147672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normative ranges of nasal airflow variables in healthy adults.
    Borojeni AAT; Garcia GJM; Moghaddam MG; Frank-Ito DO; Kimbell JS; Laud PW; Koenig LJ; Rhee JS
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):87-98. PubMed ID: 31267334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlation between Subjective Nasal Patency and Intranasal Airflow Distribution.
    Casey KP; Borojeni AA; Koenig LJ; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2017 Apr; 156(4):741-750. PubMed ID: 28139171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perception of better nasal patency correlates with increased mucosal cooling after surgery for nasal obstruction.
    Sullivan CD; Garcia GJ; Frank-Ito DO; Kimbell JS; Rhee JS
    Otolaryngol Head Neck Surg; 2014 Jan; 150(1):139-47. PubMed ID: 24154749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correlation of Nasal Mucosal Temperature and Nasal Patency-A Computational Fluid Dynamics Study.
    Tjahjono R; Salati H; Inthavong K; Singh N
    Laryngoscope; 2023 Jun; 133(6):1328-1335. PubMed ID: 37158263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nasal air conditioning following total inferior turbinectomy compared to inferior turbinoplasty - A computational fluid dynamics study.
    Siu J; Inthavong K; Dong J; Shang Y; Douglas RG
    Clin Biomech (Bristol, Avon); 2021 Jan; 81():105237. PubMed ID: 33272646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hierarchical stepwise approach to evaluate nasal patency after virtual surgery for nasal airway obstruction.
    Frank-Ito DO; Kimbell JS; Borojeni AAT; Garcia GJM; Rhee JS
    Clin Biomech (Bristol, Avon); 2019 Jan; 61():172-180. PubMed ID: 30594764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Middle versus Inferior Total Turbinectomy on Nasal Aerodynamics.
    Dayal A; Rhee JS; Garcia GJ
    Otolaryngol Head Neck Surg; 2016 Sep; 155(3):518-25. PubMed ID: 27165673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Nasal Obstruction on Continuous Positive Airway Pressure Treatment: Computational Fluid Dynamics Analyses.
    Wakayama T; Suzuki M; Tanuma T
    PLoS One; 2016; 11(3):e0150951. PubMed ID: 26943335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerodynamic effects of inferior turbinate surgery on nasal airflow--a computational fluid dynamics model.
    Chen XB; Leong SC; Lee HP; Chong VF; Wang DY
    Rhinology; 2010 Dec; 48(4):394-400. PubMed ID: 21442074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Fluid Dynamics to Evaluate the Effectiveness of Inferior Turbinate Reduction Techniques to Improve Nasal Airflow.
    Lee TS; Goyal P; Li C; Zhao K
    JAMA Facial Plast Surg; 2018 Jul; 20(4):263-270. PubMed ID: 29372235
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy.
    A T Borojeni A; Frank-Ito DO; Kimbell JS; Rhee JS; Garcia GJM
    Int J Numer Method Biomed Eng; 2017 May; 33(5):. PubMed ID: 27525807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Middle Turbinectomy on Airflow to the Olfactory Cleft: A Computational Fluid Dynamics Study.
    Alam S; Li C; Bradburn KH; Zhao K; Lee TS
    Am J Rhinol Allergy; 2019 May; 33(3):263-268. PubMed ID: 30543120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics assessed changes of nasal airflow after inferior turbinate surgery.
    Ormiskangas J; Valtonen O; Harju T; Rautiainen M; Kivekäs I
    Respir Physiol Neurobiol; 2022 Aug; 302():103917. PubMed ID: 35500884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Nasal Valve Shape on Downstream Volume, Airflow, and Pressure Drop: Importance of the Nasal Valve Revisited.
    Naughton JP; Lee AY; Ramos E; Wootton D; Stupak HD
    Ann Otol Rhinol Laryngol; 2018 Nov; 127(11):745-753. PubMed ID: 30191730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of nasal function after endoscopic endonasal surgery for pituitary adenoma: a computational fluid dynamics study.
    Lou M; Zhang L; Wang S; Ma R; Gong M; Hu Z; Zhang J; Shang Y; Tong Z; Zheng G; Zhang Y
    Comput Methods Biomech Biomed Engin; 2022 Oct; 25(13):1449-1458. PubMed ID: 34913791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying patients who may benefit from inferior turbinate reduction using computer simulations.
    Hariri BM; Rhee JS; Garcia GJ
    Laryngoscope; 2015 Dec; 125(12):2635-41. PubMed ID: 25963247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Mucosal Decongestion on Nasal Aerodynamics: A Pilot Study.
    Hamdan AT; Cherobin GB; Voegels RL; Rhee JS; Garcia GJM
    Otolaryngol Head Neck Surg; 2024 Jun; 170(6):1696-1704. PubMed ID: 38461407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamics as surgical planning tool: a pilot study on middle turbinate resection.
    Zhao K; Malhotra P; Rosen D; Dalton P; Pribitkin EA
    Anat Rec (Hoboken); 2014 Nov; 297(11):2187-95. PubMed ID: 25312372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.