These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36373586)

  • 1. Thermally Driven Point Defect Transformation in Antimony Selenosulfide Photovoltaic Materials.
    Che B; Cai Z; Xiao P; Li G; Huang Y; Tang R; Zhu C; Yang S; Chen T
    Adv Mater; 2023 Feb; 35(6):e2208564. PubMed ID: 36373586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additive-Assisted Hydrothermal Growth Enabling Defect Passivation and Void Remedy in Antimony Selenosulfide Solar Cells.
    Ji S; Wang Y; Hwang J; Chu J; Kim K; Jung HJ; Shin B
    Small; 2024 May; ():e2402935. PubMed ID: 38809078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Cost Antimony Selenosulfide with Tunable Bandgap for Highly Efficient Solar Cells.
    Dong J; Liu H; Cao Z; Liu Y; Bai Y; Chen M; Liu B; Wu L; Luo J; Zhang Y; Liu SF
    Small; 2023 Mar; 19(9):e2206175. PubMed ID: 36534834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Study of the Transition from Antimony Oxide to Antimony Sulfide in the Hydrothermal Process to Obtain Highly Efficient Solar Cells.
    Zhang L; Xiao P; Che B; Yang J; Cai Z; Wang H; Gao J; Liang W; Wu C; Chen T
    ChemSusChem; 2023 Apr; 16(7):e202202049. PubMed ID: 36628923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequential Coevaporation and Deposition of Antimony Selenosulfide Thin Film for Efficient Solar Cells.
    Yin Y; Jiang C; Ma Y; Tang R; Wang X; Zhang L; Li Z; Zhu C; Chen T
    Adv Mater; 2021 Mar; 33(11):e2006689. PubMed ID: 33569827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Gradient Solution Deposition Amends Unfavorable Band Structure of Sb2(S,Se)3 Film for Highly Efficient Solar Cells.
    Huang L; Dong J; Hu Y; Yang J; Peng X; Wang H; Liu A; Dong Y; Wang H; Zhu C; Tang R; Zhang Y; Chen T
    Angew Chem Int Ed Engl; 2024 Jun; ():e202406512. PubMed ID: 38899603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Over 10% Efficient Sb
    Zhang L; Zheng J; Liu C; Xie Y; Lu H; Luo Q; Liu Y; Yang H; Shen K; Mai Y
    Small; 2024 Jul; 20(27):e2310418. PubMed ID: 38267816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal Growth Promotion and Defect Passivation by Hydrothermal and Selenized Deposition for Substrate-Structured Antimony Selenosulfide Solar Cells.
    Chen GJ; Tang R; Chen S; Zheng ZH; Su ZH; Ma HL; Zhang XH; Fan P; Liang GX
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31986-31997. PubMed ID: 35793154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Se-Elemental Concentration Gradient Regulation for Efficient Sb2(S,Se)3 Solar Cells with High Open-Circuit Voltages.
    Chen J; Xu C; Li G; Xu Z; Wang Y; Zhang Y; Chen C; Wang M; He L; Xu J
    Angew Chem Int Ed Engl; 2024 Jul; ():e202409609. PubMed ID: 38976376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrazine Hydrate-Induced Surface Modification of CdS Electron Transport Layer Enables 10.30%-Efficient Sb
    Li J; Zhao Y; Li C; Wang S; Chen X; Gong J; Wang X; Xiao X
    Adv Sci (Weinh); 2022 Sep; 9(25):2202356. PubMed ID: 36093410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aqueous-Solution-Based Approach Towards Carbon-Free Sb
    Li S; Zhang Y; Tang R; Wang X; Zhang T; Jiang G; Liu W; Zhu C; Chen T
    ChemSusChem; 2018 Sep; 11(18):3208-3214. PubMed ID: 30048042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinctive Deep-Level Defects in Non-Stoichiometric Sb
    Lian W; Cao R; Li G; Cai H; Cai Z; Tang R; Zhu C; Yang S; Chen T
    Adv Sci (Weinh); 2022 Mar; 9(9):e2105268. PubMed ID: 35077014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Organic Chloride Salt Interfacial Modified Crystallization for Efficient Antimony Selenosulfide Solar Cells.
    Azam M; Luo YD; Tang R; Chen S; Zheng ZH; Su ZH; Hassan A; Fan P; Ma HL; Chen T; Liang GX; Zhang XH
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4276-4284. PubMed ID: 35034451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. KCl Treatment of CdS Electron-Transporting Layer for Improved Performance of Sb
    Liu A; Tang R; Huang L; Xiao P; Dong Y; Zhu C; Wang H; Hu L; Chen T
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48147-48153. PubMed ID: 37793191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable Solution-Phase Epitaxial Growth of Q1D Sb
    Jin X; Fang Y; Salim T; Feng M; Yuan Z; Hadke S; Sum TC; Wong LH
    Adv Mater; 2021 Nov; 33(44):e2104346. PubMed ID: 34510590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Passivation of Anion Vacancies in Antimony Selenide Film for Efficient Solar Cells.
    Cai Z; Che B; Gu Y; Xiao P; Wu L; Liang W; Zhu C; Chen T
    Adv Mater; 2024 May; ():e2404826. PubMed ID: 38743030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. More Se Vacancies in Sb
    Huang M; Cai Z; Wang S; Gong XG; Wei SH; Chen S
    Small; 2021 Sep; 17(36):e2102429. PubMed ID: 34313000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical Review on Crystal Orientation Engineering of Antimony Chalcogenide Thin Film for Solar Cell Applications.
    Li K; Tang R; Zhu C; Chen T
    Adv Sci (Weinh); 2024 Jan; 11(2):e2304963. PubMed ID: 37939308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tellurium Doping Inducing Defect Passivation for Highly Effective Antimony Selenide Thin Film Solar Cell.
    Chen G; Li X; Abbas M; Fu C; Su Z; Tang R; Chen S; Fan P; Liang G
    Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrazine solution processed Sb2S3, Sb2Se3 and Sb2(S(1-x)Se(x))3 film: molecular precursor identification, film fabrication and band gap tuning.
    Yang B; Xue DJ; Leng M; Zhong J; Wang L; Song H; Zhou Y; Tang J
    Sci Rep; 2015 Jun; 5():10978. PubMed ID: 26042519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.