These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36373889)

  • 21. Ultrasonic Healing of Plastrons.
    Drago-González A; Fauconnier M; Karunakaran B; Wong WSY; Ras RHA; Nieminen HJ
    Adv Sci (Weinh); 2024 Jul; ():e2403028. PubMed ID: 38946620
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Designing Plastrons for Underwater Bubble Capture: From Model Microstructures to Stochastic Nanostructures.
    Wong WSY; Naga A; Armstrong T; Karunakaran B; Poulikakos D; Ras RHA
    Adv Sci (Weinh); 2024 Jul; ():e2403366. PubMed ID: 38953394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metastable underwater superhydrophobicity.
    Poetes R; Holtzmann K; Franze K; Steiner U
    Phys Rev Lett; 2010 Oct; 105(16):166104. PubMed ID: 21230986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation.
    Yang Y; Li X; Zheng X; Chen Z; Zhou Q; Chen Y
    Adv Mater; 2018 Mar; 30(9):. PubMed ID: 29280219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robust Underwater Air Layer Retention and Restoration on
    Zhang Y; Hu Y; Xu B; Fan J; Zhu S; Song Y; Cui Z; Wu H; Yang Y; Zhu W; Wang F; Li J; Wu D; Chu J; Jiang L
    ACS Nano; 2022 Feb; 16(2):2730-2740. PubMed ID: 35156798
    [No Abstract]   [Full Text] [Related]  

  • 26. The Anti-Biofouling Properties of Superhydrophobic Surfaces are Short-Lived.
    Hwang GB; Page K; Patir A; Nair SP; Allan E; Parkin IP
    ACS Nano; 2018 Jun; 12(6):6050-6058. PubMed ID: 29792802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular dynamics simulation of frictional properties of Couette flow with striped superhydrophobic surfaces under different loads.
    Hu C; Tang D; Lv J; Bai M; Zhang X
    Phys Chem Chem Phys; 2019 Aug; 21(32):17786-17791. PubMed ID: 31372621
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency.
    Zhao Y; Liu Y; Xu Q; Barahman M; Bartusik D; Greer A; Lyons AM
    J Phys Chem A; 2014 Nov; 118(45):10364-71. PubMed ID: 24885074
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-term stability of aerophilic metallic surfaces underwater.
    Tesler AB; Kolle S; Prado LH; Thievessen I; Böhringer D; Backholm M; Karunakaran B; Nurmi HA; Latikka M; Fischer L; Stafslien S; Cenev ZM; Timonen JVI; Bruns M; Mazare A; Lohbauer U; Virtanen S; Fabry B; Schmuki P; Ras RHA; Aizenberg J; Goldmann WH
    Nat Mater; 2023 Dec; 22(12):1548-1555. PubMed ID: 37723337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of bio-inspired hierarchical structures in wetting.
    Grewal HS; Cho IJ; Yoon ES
    Bioinspir Biomim; 2015 Apr; 10(2):026009. PubMed ID: 25856043
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Protein Adsorption on Air Plastron Behavior of a Superhydrophobic Surface.
    Wang Y; Zhang B; Dodiuk H; Kenig S; Barry C; Ratto J; Mead J; Jia Z; Turkoglu S; Zhang J
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58096-58103. PubMed ID: 34813281
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plastron Respiration Using Commercial Fabrics.
    Atherton S; Brennan JC; Morris RH; Smith JDE; Hamlett CAE; McHale G; Shirtcliffe NJ; Newton MI
    Materials (Basel); 2014 Jan; 7(1):484-495. PubMed ID: 28788469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of water surface tension significantly impacts gecko adhesion underwater.
    Stark AY; McClung B; Niewiarowski PH; Dhinojwala A
    Integr Comp Biol; 2014 Dec; 54(6):1026-33. PubMed ID: 24944119
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering.
    Kim M; Yoo S; Jeong HE; Kwak MK
    Nat Commun; 2022 Sep; 13(1):5181. PubMed ID: 36056031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.
    Zhang J; Yao Z; Hao P
    Phys Rev E; 2016 Nov; 94(5-1):053117. PubMed ID: 27967180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultimate Stable Underwater Superhydrophobic State.
    Xiang Y; Huang S; Lv P; Xue Y; Su Q; Duan H
    Phys Rev Lett; 2017 Sep; 119(13):134501. PubMed ID: 29341680
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Filamentary superhydrophobic Teflon surfaces: Moderate apparent contact angle but superior air-retaining properties.
    Di Mundo R; Bottiglione F; Palumbo F; Notarnicola M; Carbone G
    J Colloid Interface Sci; 2016 Nov; 482():175-182. PubMed ID: 27501041
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography.
    Tricinci O; Terencio T; Pugno NM; Greco F; Mazzolai B; Mattoli V
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Air Retention under Water by the Floating Fern Salvinia: The Crucial Role of a Trapped Air Layer as a Pneumatic Spring.
    Gandyra D; Walheim S; Gorb S; Ditsche P; Barthlott W; Schimmel T
    Small; 2020 Oct; 16(42):e2003425. PubMed ID: 32996250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effective Underwater Drag Reduction: A Butterfly Wing Scale-Inspired Superhydrophobic Surface.
    Chen Y; Hu Y; Zhang LW
    ACS Appl Mater Interfaces; 2024 May; 16(20):26954-26964. PubMed ID: 38713183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.