These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36374033)
1. Interspecies Formate Exchange Drives Syntrophic Growth of Day LA; Kelsey EL; Fonseca DR; Costa KC Appl Environ Microbiol; 2022 Dec; 88(23):e0115922. PubMed ID: 36374033 [TBL] [Abstract][Full Text] [Related]
2. Effects of H2 and formate on growth yield and regulation of methanogenesis in Methanococcus maripaludis. Costa KC; Yoon SH; Pan M; Burn JA; Baliga NS; Leigh JA J Bacteriol; 2013 Apr; 195(7):1456-62. PubMed ID: 23335420 [TBL] [Abstract][Full Text] [Related]
4. Formate-dependent H2 production by the mesophilic methanogen Methanococcus maripaludis. Lupa B; Hendrickson EL; Leigh JA; Whitman WB Appl Environ Microbiol; 2008 Nov; 74(21):6584-90. PubMed ID: 18791018 [TBL] [Abstract][Full Text] [Related]
5. Random mutagenesis identifies factors involved in formate-dependent growth of the methanogenic archaeon Methanococcus maripaludis. Sattler C; Wolf S; Fersch J; Goetz S; Rother M Mol Genet Genomics; 2013 Sep; 288(9):413-24. PubMed ID: 23801407 [TBL] [Abstract][Full Text] [Related]
6. Function and regulation of the formate dehydrogenase genes of the methanogenic archaeon Methanococcus maripaludis. Wood GE; Haydock AK; Leigh JA J Bacteriol; 2003 Apr; 185(8):2548-54. PubMed ID: 12670979 [TBL] [Abstract][Full Text] [Related]
7. VhuD facilitates electron flow from H2 or formate to heterodisulfide reductase in Methanococcus maripaludis. Costa KC; Lie TJ; Xia Q; Leigh JA J Bacteriol; 2013 Nov; 195(22):5160-5. PubMed ID: 24039260 [TBL] [Abstract][Full Text] [Related]
8. H2-independent growth of the hydrogenotrophic methanogen Methanococcus maripaludis. Costa KC; Lie TJ; Jacobs MA; Leigh JA mBio; 2013 Feb; 4(2):. PubMed ID: 23443005 [TBL] [Abstract][Full Text] [Related]
9. Roles of coenzyme F420-reducing hydrogenases and hydrogen- and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis. Hendrickson EL; Leigh JA J Bacteriol; 2008 Jul; 190(14):4818-21. PubMed ID: 18487331 [TBL] [Abstract][Full Text] [Related]
10. The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism. Sieber JR; Le HM; McInerney MJ Environ Microbiol; 2014 Jan; 16(1):177-88. PubMed ID: 24387041 [TBL] [Abstract][Full Text] [Related]
11. The Fluorescence-Activating and Absorption-Shifting Tag (FAST) Enables Live-Cell Fluorescence Imaging of Methanococcus maripaludis. Hernandez E; Costa KC J Bacteriol; 2022 Jul; 204(7):e0012022. PubMed ID: 35657707 [TBL] [Abstract][Full Text] [Related]
12. The Oligosaccharyltransferase AglB Supports Surface-Associated Growth and Iron Oxidation in Methanococcus maripaludis. Holten MP; Fonseca DR; Costa KC Appl Environ Microbiol; 2021 Aug; 87(17):e0099521. PubMed ID: 34132588 [TBL] [Abstract][Full Text] [Related]
13. Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Belay N; Sparling R; Daniels L Appl Environ Microbiol; 1986 Nov; 52(5):1080-5. PubMed ID: 3098165 [TBL] [Abstract][Full Text] [Related]
14. Variation among Desulfovibrio species in electron transfer systems used for syntrophic growth. Meyer B; Kuehl J; Deutschbauer AM; Price MN; Arkin AP; Stahl DA J Bacteriol; 2013 Mar; 195(5):990-1004. PubMed ID: 23264581 [TBL] [Abstract][Full Text] [Related]
15. Enoyl-Coenzyme A Respiration via Formate Cycling in Syntrophic Bacteria. Agne M; Appel L; Seelmann C; Boll M mBio; 2021 Feb; 13(1):e0374021. PubMed ID: 35100874 [TBL] [Abstract][Full Text] [Related]
16. Growth Kinetics, Carbon Isotope Fractionation, and Gene Expression in the Hyperthermophile Topçuoğlu BD; Meydan C; Nguyen TB; Lang SQ; Holden JF Appl Environ Microbiol; 2019 May; 85(9):. PubMed ID: 30824444 [TBL] [Abstract][Full Text] [Related]
17. Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Costa KC; Wong PM; Wang T; Lie TJ; Dodsworth JA; Swanson I; Burn JA; Hackett M; Leigh JA Proc Natl Acad Sci U S A; 2010 Jun; 107(24):11050-5. PubMed ID: 20534465 [TBL] [Abstract][Full Text] [Related]
18. Selenocysteine-independent suppression of UGA codons in the archaeon Methanococcus maripaludis. Seyhan D; Jehmlich N; von Bergen M; Fersch J; Rother M Biochim Biophys Acta; 2015 Nov; 1850(11):2385-92. PubMed ID: 26215786 [TBL] [Abstract][Full Text] [Related]
19. Flexibility of syntrophic enzyme systems in Desulfovibrio species ensures their adaptation capability to environmental changes. Meyer B; Kuehl JV; Deutschbauer AM; Arkin AP; Stahl DA J Bacteriol; 2013 Nov; 195(21):4900-14. PubMed ID: 23974031 [TBL] [Abstract][Full Text] [Related]