BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 36374036)

  • 1. Maternal heterozygosity of Slc6a19 causes metabolic perturbation and congenital NAD deficiency disorder in mice.
    Cuny H; Bozon K; Kirk RB; Sheng DZ; Bröer S; Dunwoodie SL
    Dis Model Mech; 2023 May; 16(5):. PubMed ID: 36374036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NAD deficiency due to environmental factors or gene-environment interactions causes congenital malformations and miscarriage in mice.
    Cuny H; Rapadas M; Gereis J; Martin EMMA; Kirk RB; Shi H; Dunwoodie SL
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3738-3747. PubMed ID: 32015132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nicotinamide Adenine Dinucleotide Deficiency and Its Impact on Mammalian Development.
    Dunwoodie SL; Bozon K; Szot JO; Cuny H
    Antioxid Redox Signal; 2023 Dec; 39(16-18):1108-1132. PubMed ID: 37300479
    [No Abstract]   [Full Text] [Related]  

  • 4. A metabolic signature for NADSYN1-dependent congenital NAD deficiency disorder.
    Szot JO; Cuny H; Martin EM; Sheng DZ; Iyer K; Portelli S; Nguyen V; Gereis JM; Alankarage D; Chitayat D; Chong K; Wentzensen IM; Vincent-Delormé C; Lermine A; Burkitt-Wright E; Ji W; Jeffries L; Pais LS; Tan TY; Pitt J; Wise CA; Wright H; Andrews ID; Pruniski B; Grebe TA; Corsten-Janssen N; Bouman K; Poulton C; Prakash S; Keren B; Brown NJ; Hunter MF; Heath O; Lakhani SA; McDermott JH; Ascher DB; Chapman G; Bozon K; Dunwoodie SL
    J Clin Invest; 2024 Feb; 134(4):. PubMed ID: 38357931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD Deficiency, Congenital Malformations, and Niacin Supplementation.
    Shi H; Enriquez A; Rapadas M; Martin EMMA; Wang R; Moreau J; Lim CK; Szot JO; Ip E; Hughes JN; Sugimoto K; Humphreys DT; McInerney-Leo AM; Leo PJ; Maghzal GJ; Halliday J; Smith J; Colley A; Mark PR; Collins F; Sillence DO; Winlaw DS; Ho JWK; Guillemin GJ; Brown MA; Kikuchi K; Thomas PQ; Stocker R; Giannoulatou E; Chapman G; Duncan EL; Sparrow DB; Dunwoodie SL
    N Engl J Med; 2017 Aug; 377(6):544-552. PubMed ID: 28792876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stage-Specific L-Proline Uptake by Amino Acid Transporter Slc6a19/B
    Treleaven T; Zada M; Nagarajah R; Bailey CG; Rasko JEJ; Morris MB; Day ML
    Cells; 2022 Dec; 12(1):. PubMed ID: 36611813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First person - Hartmut Cuny.
    Dis Model Mech; 2023 May; 16(5):. PubMed ID: 36374035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excretion of excess nitrogen and increased survival by loss of SLC6A19 in a mouse model of ornithine transcarbamylase deficiency.
    Belanger AJ; Gefteas E; Przybylska M; Geller S; Anarat-Cappillino G; Kloss A; Yew NS
    J Inherit Metab Dis; 2023 Jan; 46(1):55-65. PubMed ID: 36220785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SLC6A19 is a novel putative gene, induced by dioxins via AhR in human hepatoma HepG2 cells.
    Tian W; Fu H; Xu T; Xu SL; Guo Z; Tian J; Tao W; Xie HQ; Zhao B
    Environ Pollut; 2018 Jun; 237():508-514. PubMed ID: 29522993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAD+ deficiency in human congenital malformations and miscarriage: A new model of pleiotropy.
    Mark PR
    Am J Med Genet A; 2022 Sep; 188(9):2834-2849. PubMed ID: 35484986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The serum and glucocorticoid inducible kinases SGK1-3 stimulate the neutral amino acid transporter SLC6A19.
    Böhmer C; Sopjani M; Klaus F; Lindner R; Laufer J; Jeyaraj S; Lang F; Palmada M
    Cell Physiol Biochem; 2010; 25(6):723-32. PubMed ID: 20511718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bi-allelic Mutations in NADSYN1 Cause Multiple Organ Defects and Expand the Genotypic Spectrum of Congenital NAD Deficiency Disorders.
    Szot JO; Campagnolo C; Cao Y; Iyer KR; Cuny H; Drysdale T; Flores-Daboub JA; Bi W; Westerfield L; Liu P; Leung TN; Choy KW; Chapman G; Xiao R; Siu VM; Dunwoodie SL
    Am J Hum Genet; 2020 Jan; 106(1):129-136. PubMed ID: 31883644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19.
    Seow HF; Bröer S; Bröer A; Bailey CG; Potter SJ; Cavanaugh JA; Rasko JE
    Nat Genet; 2004 Sep; 36(9):1003-7. PubMed ID: 15286788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the neutral amino acid transporter B0AT1 (SLC6A19) in Hartnup disorder and protein nutrition.
    Bröer S
    IUBMB Life; 2009 Jun; 61(6):591-9. PubMed ID: 19472175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolome-wide association study of the relationship between chlorpyrifos exposure and first trimester serum metabolite levels in pregnant Thai farmworkers.
    Liang D; Batross J; Fiedler N; Prapamontol T; Suttiwan P; Panuwet P; Naksen W; Baumert BO; Yakimavets V; Tan Y; D'Souza P; Mangklabruks A; Sittiwang S; Kaewthit K; Kohsuwan K; Promkam N; Pingwong S; Ryan PB; Barr DB;
    Environ Res; 2022 Dec; 215(Pt 2):114319. PubMed ID: 36108722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New aspects for the brain in Hartnup disease based on mining of high-resolution cellular mRNA expression data for SLC6A19.
    Kravetz Z; Schmidt-Kastner R
    IBRO Neurosci Rep; 2023 Jun; 14():393-397. PubMed ID: 37101820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder.
    Kleta R; Romeo E; Ristic Z; Ohura T; Stuart C; Arcos-Burgos M; Dave MH; Wagner CA; Camargo SR; Inoue S; Matsuura N; Helip-Wooley A; Bockenhauer D; Warth R; Bernardini I; Visser G; Eggermann T; Lee P; Chairoungdua A; Jutabha P; Babu E; Nilwarangkoon S; Anzai N; Kanai Y; Verrey F; Gahl WA; Koizumi A
    Nat Genet; 2004 Sep; 36(9):999-1002. PubMed ID: 15286787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Up-regulation of amino acid transporter SLC6A19 activity and surface protein abundance by PKB/Akt and PIKfyve.
    Bogatikov E; Munoz C; Pakladok T; Alesutan I; Shojaiefard M; Seebohm G; Föller M; Palmada M; Böhmer C; Bröer S; Lang F
    Cell Physiol Biochem; 2012; 30(6):1538-46. PubMed ID: 23234856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The female mouse is resistant to mild vitamin B
    van der Stelt I; Shi W; Bekkenkamp-Grovenstein M; Zapata-Pérez R; Houtkooper RH; de Boer VCJ; Hegeman MA; Keijer J
    Eur J Nutr; 2022 Feb; 61(1):329-340. PubMed ID: 34338868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibiting neutral amino acid transport for the treatment of phenylketonuria.
    Belanger AM; Przybylska M; Gefteas E; Furgerson M; Geller S; Kloss A; Cheng SH; Zhu Y; Yew NS
    JCI Insight; 2018 Jul; 3(14):. PubMed ID: 30046012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.