These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
471 related articles for article (PubMed ID: 36374037)
1. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects. Heo YB; Hwang GH; Kang SW; Bae S; Woo HM Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037 [TBL] [Abstract][Full Text] [Related]
2. Improved plant cytosine base editors with high editing activity, purity, and specificity. Ren Q; Sretenovic S; Liu G; Zhong Z; Wang J; Huang L; Tang X; Guo Y; Liu L; Wu Y; Zhou J; Zhao Y; Yang H; He Y; Liu S; Yin D; Mayorga R; Zheng X; Zhang T; Qi Y; Zhang Y Plant Biotechnol J; 2021 Oct; 19(10):2052-2068. PubMed ID: 34042262 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674 [TBL] [Abstract][Full Text] [Related]
4. CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. Yu H; Wu Z; Chen X; Ji Q; Tao S mSystems; 2020 Sep; 5(5):. PubMed ID: 32963098 [TBL] [Abstract][Full Text] [Related]
5. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922 [TBL] [Abstract][Full Text] [Related]
6. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. Hu Z; Wang Y; Liu Q; Qiu Y; Zhong Z; Li K; Li W; Deng Z; Sun Y mBio; 2021 Apr; 12(2):. PubMed ID: 33879582 [TBL] [Abstract][Full Text] [Related]
7. [Optimization of CRISPR/Cas9-based multiplex base editing in Lu H; Zhang Q; Yu S; Wang Y; Kang M; Han S; Liu Y; Wang M Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):780-795. PubMed ID: 35234398 [TBL] [Abstract][Full Text] [Related]
8. Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE. Zhou J; Liu Y; Wei Y; Zheng S; Gou S; Chen T; Yang Y; Lan T; Chen M; Liao Y; Zhang Q; Tang C; Liu Y; Wu Y; Peng X; Gao M; Wang J; Zhang K; Lai L; Zou Q Mol Ther; 2022 Jul; 30(7):2443-2451. PubMed ID: 35443934 [TBL] [Abstract][Full Text] [Related]
9. Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Jin S; Fei H; Zhu Z; Luo Y; Liu J; Gao S; Zhang F; Chen YH; Wang Y; Gao C Mol Cell; 2020 Sep; 79(5):728-740.e6. PubMed ID: 32721385 [TBL] [Abstract][Full Text] [Related]
10. Engineered CBEs based on Macaca fascicularis A3A with improved properties for precise genome editing. Ren CY; Liu YS; He YS; Zhang LP; Rao JH; Rao Y; Chen JH Cell Rep; 2024 Mar; 43(3):113878. PubMed ID: 38431844 [TBL] [Abstract][Full Text] [Related]
11. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Doman JL; Raguram A; Newby GA; Liu DR Nat Biotechnol; 2020 May; 38(5):620-628. PubMed ID: 32042165 [TBL] [Abstract][Full Text] [Related]
12. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Zuo E; Sun Y; Yuan T; He B; Zhou C; Ying W; Liu J; Wei W; Zeng R; Li Y; Yang H Nat Methods; 2020 Jun; 17(6):600-604. PubMed ID: 32424272 [TBL] [Abstract][Full Text] [Related]
13. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Zhou C; Sun Y; Yan R; Liu Y; Zuo E; Gu C; Han L; Wei Y; Hu X; Zeng R; Li Y; Zhou H; Guo F; Yang H Nature; 2019 Jul; 571(7764):275-278. PubMed ID: 31181567 [TBL] [Abstract][Full Text] [Related]
14. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum. Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843 [TBL] [Abstract][Full Text] [Related]
15. Efficient gene editing in Corynebacterium glutamicum using the CRISPR/Cas9 system. Peng F; Wang X; Sun Y; Dong G; Yang Y; Liu X; Bai Z Microb Cell Fact; 2017 Nov; 16(1):201. PubMed ID: 29137643 [TBL] [Abstract][Full Text] [Related]
16. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum. Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154 [TBL] [Abstract][Full Text] [Related]
17. Current Status and Challenges of DNA Base Editing Tools. Jeong YK; Song B; Bae S Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143 [TBL] [Abstract][Full Text] [Related]
18. Development of an Efficient C-to-T Base-Editing System and Its Application to Cellulase Transcription Factor Precise Engineering in Thermophilic Fungus Zhang C; Li N; Rao L; Li J; Liu Q; Tian C Microbiol Spectr; 2022 Jun; 10(3):e0232121. PubMed ID: 35608343 [No Abstract] [Full Text] [Related]
19. Development of a DNA double-strand break-free base editing tool in Deng C; Lv X; Li J; Liu Y; Du G; Liu L Metab Eng Commun; 2020 Dec; 11():e00135. PubMed ID: 32577397 [TBL] [Abstract][Full Text] [Related]
20. RNA-guided single/double gene repressions in Corynebacterium glutamicum using an efficient CRISPR interference and its application to industrial strain. Park J; Shin H; Lee SM; Um Y; Woo HM Microb Cell Fact; 2018 Jan; 17(1):4. PubMed ID: 29316926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]