These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36374245)

  • 21. Advances in therapeutic CRISPR/Cas9 genome editing.
    Savić N; Schwank G
    Transl Res; 2016 Feb; 168():15-21. PubMed ID: 26470680
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applications of Alternative Nucleases in the Age of CRISPR/Cas9.
    Guha TK; Edgell DR
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186020
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Therapeutic Genome Editing and In Vivo Delivery.
    Ramirez-Phillips AC; Liu D
    AAPS J; 2021 Jun; 23(4):80. PubMed ID: 34080099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of a CRISPR/Cas9 genome editing toolbox for Corynebacterium glutamicum.
    Liu J; Wang Y; Lu Y; Zheng P; Sun J; Ma Y
    Microb Cell Fact; 2017 Nov; 16(1):205. PubMed ID: 29145843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TSA Promotes CRISPR/Cas9 Editing Efficiency and Expression of Cell Division-Related Genes from Plant Protoplasts.
    Choi SH; Lee MH; Jin DM; Ju SJ; Ahn WS; Jie EY; Lee JM; Lee J; Kim CY; Kim SW
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the impact of chromatin conformation on genome editing tools.
    Chen X; Rinsma M; Janssen JM; Liu J; Maggio I; Gonçalves MA
    Nucleic Acids Res; 2016 Jul; 44(13):6482-92. PubMed ID: 27280977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas systems for genome editing of mammalian cells.
    Mani I; Arazoe T; Singh V
    Prog Mol Biol Transl Sci; 2021; 181():15-30. PubMed ID: 34127192
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing.
    Zhang X; Li T; Ou J; Huang J; Liang P
    Protein Cell; 2022 May; 13(5):316-335. PubMed ID: 33945139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish.
    Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B
    Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals.
    Wani AK; Akhtar N; Singh R; Prakash A; Raza SHA; Cavalu S; Chopra C; Madkour M; Elolimy A; Hashem NM
    Vet Res Commun; 2023 Jan; 47(1):1-16. PubMed ID: 35781172
    [TBL] [Abstract][Full Text] [Related]  

  • 35. HMGN1 enhances CRISPR-directed dual-function A-to-G and C-to-G base editing.
    Yang C; Ma Z; Wang K; Dong X; Huang M; Li Y; Zhu X; Li J; Cheng Z; Bi C; Zhang X
    Nat Commun; 2023 Apr; 14(1):2430. PubMed ID: 37105976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting.
    Chen F; Ding X; Feng Y; Seebeck T; Jiang Y; Davis GD
    Nat Commun; 2017 Apr; 8():14958. PubMed ID: 28387220
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CRISPR-Cas9 Based Genome Editing in Wheat.
    Smedley MA; Hayta S; Clarke M; Harwood WA
    Curr Protoc; 2021 Mar; 1(3):e65. PubMed ID: 33687760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Application and optimization of CRISPR/Cas system in bacteria].
    Fu J; Yang F; Xie H; Gu F
    Sheng Wu Gong Cheng Xue Bao; 2019 Mar; 35(3):341-350. PubMed ID: 30912343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Genome-Editing Nanomachine Constructed with a Clustered Regularly Interspaced Short Palindromic Repeats System and Activated by Near-Infrared Illumination.
    Peng H; Le C; Wu J; Li XF; Zhang H; Le XC
    ACS Nano; 2020 Mar; 14(3):2817-2826. PubMed ID: 32048826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.