BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36374644)

  • 1. Tracing the electron flow in redox metabolism: The appropriate distribution of electrons is essential to maintain redox balance in cancer cells.
    Ying M; Hu X
    Semin Cancer Biol; 2022 Dec; 87():32-47. PubMed ID: 36374644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic AMPK signaling dynamic activation in response to REDOX balance are sentinel biomarkers of exercise and antioxidant intervention to improve blood glucose control.
    Wu M; Zhao A; Yan X; Gao H; Zhang C; Liu X; Luo Q; Xie F; Liu S; Shi D
    Elife; 2022 Sep; 11():. PubMed ID: 36155132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Reductive versus Oxidative Stress in Tumor Progression and Anticancer Drug Resistance.
    Chun KS; Kim DH; Surh YJ
    Cells; 2021 Mar; 10(4):. PubMed ID: 33808242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein S-glutathionlyation links energy metabolism to redox signaling in mitochondria.
    Mailloux RJ; Treberg JR
    Redox Biol; 2016 Aug; 8():110-8. PubMed ID: 26773874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The redox regulation of thiol dependent signaling pathways in cancer.
    Giles GI
    Curr Pharm Des; 2006; 12(34):4427-43. PubMed ID: 17168752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications.
    Ju HQ; Lin JF; Tian T; Xie D; Xu RH
    Signal Transduct Target Ther; 2020 Oct; 5(1):231. PubMed ID: 33028807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flux through mitochondrial redox circuits linked to nicotinamide nucleotide transhydrogenase generates counterbalance changes in energy expenditure.
    Smith CD; Schmidt CA; Lin CT; Fisher-Wellman KH; Neufer PD
    J Biol Chem; 2020 Nov; 295(48):16207-16216. PubMed ID: 32747443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of redox balance in cancer and T cells.
    Kong H; Chandel NS
    J Biol Chem; 2018 May; 293(20):7499-7507. PubMed ID: 29282291
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reductive carboxylation supports redox homeostasis during anchorage-independent growth.
    Jiang L; Shestov AA; Swain P; Yang C; Parker SJ; Wang QA; Terada LS; Adams ND; McCabe MT; Pietrak B; Schmidt S; Metallo CM; Dranka BP; Schwartz B; DeBerardinis RJ
    Nature; 2016 Apr; 532(7598):255-8. PubMed ID: 27049945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals and antioxidants in normal physiological functions and human disease.
    Valko M; Leibfritz D; Moncol J; Cronin MT; Mazur M; Telser J
    Int J Biochem Cell Biol; 2007; 39(1):44-84. PubMed ID: 16978905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein S-glutathionylation reactions as a global inhibitor of cell metabolism for the desensitization of hydrogen peroxide signals.
    Mailloux RJ
    Redox Biol; 2020 May; 32():101472. PubMed ID: 32171726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive stress in cancer.
    Zhang L; Tew KD
    Adv Cancer Res; 2021; 152():383-413. PubMed ID: 34353443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reductive stress in cancer: coming out of the shadows.
    Ge M; Papagiannakopoulos T; Bar-Peled L
    Trends Cancer; 2024 Feb; 10(2):103-112. PubMed ID: 37925319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic Responses to Reductive Stress.
    Xiao W; Loscalzo J
    Antioxid Redox Signal; 2020 Jun; 32(18):1330-1347. PubMed ID: 31218894
    [No Abstract]   [Full Text] [Related]  

  • 17. Dietary nutrients and their control of the redox bioenergetic networks as therapeutics in redox dysfunctions sustained pathologies.
    Kuchi Bhotla H; Meyyazhagan A; Pappusamy M; Park S; Arumugam VA; Pushparaj K; Rengasamy KR; Liu W; Balasubramanian B
    Pharmacol Res; 2021 Aug; 170():105709. PubMed ID: 34089868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proline metabolism and redox; maintaining a balance in health and disease.
    Vettore LA; Westbrook RL; Tennant DA
    Amino Acids; 2021 Dec; 53(12):1779-1788. PubMed ID: 34291343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential role of sulfur-containing antioxidant systems in highly oxidative environments.
    Mukwevho E; Ferreira Z; Ayeleso A
    Molecules; 2014 Nov; 19(12):19376-89. PubMed ID: 25429562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations.
    Brennan LA; Kantorow M
    Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.