These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36374726)

  • 21. Grazer-mediated regeneration of methylmercury, inorganic mercury, and other metals in freshwater.
    Qin F; Amyot M; Bertolo A
    Sci Total Environ; 2022 Jul; 829():154553. PubMed ID: 35304153
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mercury concentrations in fish and invertebrates of the Finger Lakes in central New York, USA.
    Razavi NR; Halfman JD; Cushman SF; Massey T; Beutner R; Foust J; Gilman B; Cleckner LB
    Ecotoxicology; 2020 Dec; 29(10):1673-1685. PubMed ID: 31820166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mercury concentrations in Antarctic zooplankton with a focus on the krill species, Euphausia superba.
    Korejwo E; Panasiuk A; Wawrzynek-Borejko J; Jędruch A; Bełdowski J; Paturej A; Bełdowska M
    Sci Total Environ; 2023 Dec; 905():167239. PubMed ID: 37742970
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impacts of zooplankton composition and algal enrichment on the accumulation of mercury in an experimental freshwater food web.
    Pickhardt PC; Folt CL; Chen CY; Klaue B; Blum JD
    Sci Total Environ; 2005 Mar; 339(1-3):89-101. PubMed ID: 15740761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario.
    He T; Lu J; Yang F; Feng X
    Sci Total Environ; 2007 Nov; 386(1-3):53-64. PubMed ID: 17720225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatial and temporal variation in mercury bioaccumulation by zooplankton in Lake Champlain (North America).
    Chen C; Kamman N; Williams J; Bugge D; Taylor V; Jackson B; Miller E
    Environ Pollut; 2012 Feb; 161():343-9. PubMed ID: 21995871
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing element-specific patterns of bioaccumulation across New England lakes.
    Ward DM; Mayes B; Sturup S; Folt CL; Chen CY
    Sci Total Environ; 2012 Apr; 421-422():230-7. PubMed ID: 22356871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah.
    Boyd ES; Yu RQ; Barkay T; Hamilton TL; Baxter BK; Naftz DL; Marvin-DiPasquale M
    Sci Total Environ; 2017 Mar; 581-582():495-506. PubMed ID: 28057343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mercury and methylmercury in the Gulf of Trieste (northern Adriatic Sea).
    Faganeli J; Horvat M; Covelli S; Fajon V; Logar M; Lipej L; Cermelj B
    Sci Total Environ; 2003 Mar; 304(1-3):315-26. PubMed ID: 12663193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Total- and methyl-mercury concentrations and methylation rates across the freshwater to hypersaline continuum of the Great Salt Lake, Utah, USA.
    Johnson WP; Swanson N; Black B; Rudd A; Carling G; Fernandez DP; Luft J; Van Leeuwen J; Marvin-DiPasquale M
    Sci Total Environ; 2015 Apr; 511():489-500. PubMed ID: 25576792
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of disturbance and vegetation type on total and methylmercury in boreal peatland and forest soils.
    Braaten HFV; de Wit HA
    Environ Pollut; 2016 Nov; 218():140-149. PubMed ID: 27552047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mercury stable isotopes in sediments and largemouth bass from Florida lakes, USA.
    Sherman LS; Blum JD
    Sci Total Environ; 2013 Mar; 448():163-75. PubMed ID: 23062970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioaccumulation patterns of methyl mercury and essential fatty acids in lacustrine planktonic food webs and fish.
    Kainz M; Telmer K; Mazumder A
    Sci Total Environ; 2006 Sep; 368(1):271-82. PubMed ID: 16226794
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury dynamics at the base of the pelagic food web of the Gulf of Gdańsk, southern Baltic Sea.
    Jędruch A; Bełdowski J; Bełdowska M
    Mar Pollut Bull; 2024 May; 202():116363. PubMed ID: 38621354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lowered nutritional quality of plankton caused by global environmental changes.
    Lau DCP; Jonsson A; Isles PDF; Creed IF; Bergström AK
    Glob Chang Biol; 2021 Dec; 27(23):6294-6306. PubMed ID: 34520606
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics, distribution, and transformations of mercury species from pyrenean high-altitude lakes.
    Duval B; Tessier E; Kortazar L; Fernandez LA; de Diego A; Amouroux D
    Environ Res; 2023 Jan; 216(Pt 2):114611. PubMed ID: 36283441
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioaccumulation of methylmercury in a marine copepod.
    Lee CS; Fisher NS
    Environ Toxicol Chem; 2017 May; 36(5):1287-1293. PubMed ID: 27764899
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes.
    Gantner N; Hintelmann H; Zheng W; Muir DC
    Environ Sci Technol; 2009 Dec; 43(24):9148-54. PubMed ID: 20000504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and taxonomic variation of mercury concentration in low trophic level fauna from the Mediterranean Sea.
    Buckman KL; Lane O; Kotnik J; Bratkic A; Sprovieri F; Horvat M; Pirrone N; Evers DC; Chen CY
    Ecotoxicology; 2018 Dec; 27(10):1341-1352. PubMed ID: 30315417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakes.
    Gentès S; Löhrer B; Legeay A; Mazel AF; Anschutz P; Charbonnier C; Tessier E; Maury-Brachet R
    Chemosphere; 2021 Mar; 267():128890. PubMed ID: 33248739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.