BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36374743)

  • 1. The virtual sinoatrial node: What did computational models tell us about cardiac pacemaking?
    Ricci E; Bartolucci C; Severi S
    Prog Biophys Mol Biol; 2023 Jan; 177():55-79. PubMed ID: 36374743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-specific Dynamic Clamp analysis of the role of funny If current in cardiac pacemaking.
    Ravagli E; Bucchi A; Bartolucci C; Paina M; Baruscotti M; DiFrancesco D; Severi S
    Prog Biophys Mol Biol; 2016 Jan; 120(1-3):50-66. PubMed ID: 26718599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic Insights Into the Reduced Pacemaking Rate of the Rabbit Sinoatrial Node During Postnatal Development: A Simulation Study.
    Alghamdi AM; Testrow CP; Whittaker DG; Boyett MR; Hancox JC; Zhang H
    Front Physiol; 2020; 11():547577. PubMed ID: 33329016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An updated computational model of rabbit sinoatrial action potential to investigate the mechanisms of heart rate modulation.
    Severi S; Fantini M; Charawi LA; DiFrancesco D
    J Physiol; 2012 Sep; 590(18):4483-99. PubMed ID: 22711956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism underlying impaired cardiac pacemaking rhythm during ischemia: A simulation study.
    Bai X; Wang K; Yuan Y; Li Q; Dobrzynski H; Boyett MR; Hancox JC; Zhang H
    Chaos; 2017 Sep; 27(9):093934. PubMed ID: 28964153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of small conductance K
    Torrente AG; Zhang R; Wang H; Zaini A; Kim B; Yue X; Philipson KD; Goldhaber JI
    J Physiol; 2017 Jun; 595(12):3847-3865. PubMed ID: 28346695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases.
    Kharche S; Yu J; Lei M; Zhang H
    Am J Physiol Heart Circ Physiol; 2011 Sep; 301(3):H945-63. PubMed ID: 21724866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Roles of hyperpolarization-activated current If in sinoatrial node pacemaking: insights from bifurcation analysis of mathematical models.
    Kurata Y; Matsuda H; Hisatome I; Shibamoto T
    Am J Physiol Heart Circ Physiol; 2010 Jun; 298(6):H1748-60. PubMed ID: 20363885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond pacemaking: HCN channels in sinoatrial node function.
    Hennis K; Biel M; Wahl-Schott C; Fenske S
    Prog Biophys Mol Biol; 2021 Nov; 166():51-60. PubMed ID: 33753086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of fibroblast-myocyte coupling on the sinoatrial node activity: A computational study.
    Karpaev AA; Syunyaev RA; Aliev RR
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2966. PubMed ID: 29431901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency-Dependent Properties of the Hyperpolarization-Activated Cation Current, I
    Hu W; Clark RB; Giles WR; Kondo C; Zhang H
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microelectrode Array Recording of Sinoatrial Node Firing Rate to Identify Intrinsic Cardiac Pacemaking Defects in Mice.
    Kumar P; Si M; Paulhus K; Glasscock E
    J Vis Exp; 2021 Jul; (173):. PubMed ID: 34279515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic links between Na+ channel (SCN5A) mutations and impaired cardiac pacemaking in sick sinus syndrome.
    Butters TD; Aslanidi OV; Inada S; Boyett MR; Hancox JC; Lei M; Zhang H
    Circ Res; 2010 Jul; 107(1):126-37. PubMed ID: 20448214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling and heterogeneity modulate pacemaking capability in healthy and diseased two-dimensional sinoatrial node tissue models.
    Campana C; Ricci E; Bartolucci C; Severi S; Sobie EA
    PLoS Comput Biol; 2022 Nov; 18(11):e1010098. PubMed ID: 36409762
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic vagal modulation of cardiac pacemaking may lead to erroneous identification of cardiac "chaos".
    Zhang JQ; Holden AV; Monfredi O; Boyett MR; Zhang H
    Chaos; 2009 Jun; 19(2):028509. PubMed ID: 19566284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered sinoatrial node function and intra-atrial conduction in murine gain-of-function Scn5a+/ΔKPQ hearts suggest an overlap syndrome.
    Wu J; Zhang Y; Zhang X; Cheng L; Lammers WJ; Grace AA; Fraser JA; Zhang H; Huang CL; Lei M
    Am J Physiol Heart Circ Physiol; 2012 Apr; 302(7):H1510-23. PubMed ID: 22287583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct localization and modulation of Cav1.2 and Cav1.3 L-type Ca2+ channels in mouse sinoatrial node.
    Christel CJ; Cardona N; Mesirca P; Herrmann S; Hofmann F; Striessnig J; Ludwig A; Mangoni ME; Lee A
    J Physiol; 2012 Dec; 590(24):6327-42. PubMed ID: 23045342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of sarcoplasmic reticulum Ca2+ cycling and Na+/Ca2+ exchanger in sinoatrial node pacemaking: insights from bifurcation analysis of mathematical models.
    Kurata Y; Hisatome I; Shibamoto T
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(11):H2285-300. PubMed ID: 22447940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pacemaker activity and ion channels in the sinoatrial node cells: MicroRNAs and arrhythmia.
    Fan W; Sun X; Yang C; Wan J; Luo H; Liao B
    Prog Biophys Mol Biol; 2023 Jan; 177():151-167. PubMed ID: 36450332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of calcium clock-mediated pacemaking by inositol-1,4,5-trisphosphate receptors in mouse sinoatrial nodal cells.
    Kapoor N; Tran A; Kang J; Zhang R; Philipson KD; Goldhaber JI
    J Physiol; 2015 Jun; 593(12):2649-63. PubMed ID: 25903031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.