These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 36374822)

  • 21. Expanded modeling of temperature-dependent dielectric properties for microwave thermal ablation.
    Ji Z; Brace CL
    Phys Med Biol; 2011 Aug; 56(16):5249-64. PubMed ID: 21791728
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heating of tissues by microwaves: a model analysis.
    Foster KR; Lozano-Nieto A; Riu PJ; Ely TS
    Bioelectromagnetics; 1998; 19(7):420-8. PubMed ID: 9771585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Control of interstitial thermal coagulation: comparative evaluation of microwave and ultrasound applicators.
    Deardorff DL; Diederich CJ; Nau WH
    Med Phys; 2001 Jan; 28(1):104-17. PubMed ID: 11213915
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Microwave Hyperthermia of Cancer Cells with Fullerene.
    Sun M; Kiourti A; Wang H; Zhao S; Zhao G; Lu X; Volakis JL; He X
    Mol Pharm; 2016 Jul; 13(7):2184-92. PubMed ID: 27195904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of shape and size of agar gels on heating uniformity during pulsed microwave treatment.
    Soto-Reyes N; Temis-Pérez AL; López-Malo A; Rojas-Laguna R; Sosa-Morales ME
    J Food Sci; 2015 May; 80(5):E1021-5. PubMed ID: 25827444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A finite difference thermal model of a cylindrical microwave heating applicator using locally conformal overlapping grids: part I--theoretical formulation.
    Al-Rizzo HM; Tranquilla JM; Feng M
    J Microw Power Electromagn Energy; 2005; 40(1):17-29. PubMed ID: 16673831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Characteristics of microwave and thermal heating of samples of cell suspensions and solutions of several compounds].
    Morozov II; Dergacheva IP; Petin VG; Dubovik BV; Morozova GV
    Radiats Biol Radioecol; 1996; 36(5):671-5. PubMed ID: 9019277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An automated dosimetry system for microwave and thermal exposure of biological samples in vitro.
    Joyner KH; Davis CC; Elson EC; Czerska EM; Czerski P
    Health Phys; 1989 Mar; 56(3):303-7. PubMed ID: 2917859
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conventional heating vs. microwave sludge pretreatment comparison under identical heating/cooling profiles for thermophilic advanced anaerobic digestion.
    Hosseini Koupaie E; Eskicioglu C
    Waste Manag; 2016 Jul; 53():182-95. PubMed ID: 27160636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heating technology for malignant tumors: a review.
    Kok HP; Cressman ENK; Ceelen W; Brace CL; Ivkov R; Grüll H; Ter Haar G; Wust P; Crezee J
    Int J Hyperthermia; 2020; 37(1):711-741. PubMed ID: 32579419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improving heating uniformity of pathological tissue specimens inside a domestic microwave oven.
    Hassan OA; Kandil AH; El Bialy AM; Hassaballa IA
    J Microw Power Electromagn Energy; 2013; 47(2):87-101. PubMed ID: 24779143
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MRI phase mapping of temperature distributions induced in food by microwave heating.
    Nott KP; Hall LD; Bows JR; Hale M; Patrick ML
    Magn Reson Imaging; 2000 Jan; 18(1):69-79. PubMed ID: 10642104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microwave heating of cooked pork patties as a function of fat content.
    Picouet PA; Fernández A; Serra X; Suñol JJ; Arnau J
    J Food Sci; 2007 Mar; 72(2):E57-63. PubMed ID: 17995834
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Feasibility of salvage interstitial microwave thermal therapy for prostate carcinoma following failed brachytherapy: studies in a tissue equivalent phantom.
    McCann C; Kumaradas JC; Gertner MR; Davidson SR; Dolan AM; Sherar MD
    Phys Med Biol; 2003 Apr; 48(8):1041-52. PubMed ID: 12741500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of changes in salt content and food thickness on electromagnetic heating of rice, mashed potatoes and peas in 915 MHz single mode microwave cavity.
    Jain D; Tang J; Pedrow PD; Tang Z; Sablani S; Hong YK
    Food Res Int; 2019 May; 119():584-595. PubMed ID: 30884692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow-dependent vascular heat transfer during microwave thermal ablation.
    Chiang J; Hynes K; Brace CL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5582-5. PubMed ID: 23367194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adjuvant Thermal Accelerant Gel Use Increases Microwave Ablation Zone Temperature in Porcine Liver as Measured by MR Thermometry.
    Maxwell AWP; Park WKC; Baird GL; Walsh EG; Dupuy DE
    J Vasc Interv Radiol; 2020 Aug; 31(8):1357-1364. PubMed ID: 32457010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Features of modifications of cytotoxic consequences of microwave and thermal heating].
    Morozov II; Petin VG
    Radiats Biol Radioecol; 1998; 38(2):232-7. PubMed ID: 9633626
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupled electromagnetic-thermodynamic simulations of microwave heating problems using the FDTD algorithm.
    Kopyt P; Celuch M
    J Microw Power Electromagn Energy; 2007; 41(4):18-29. PubMed ID: 18557395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermal destruction of folacin in microwave and conventional heating.
    Cooper RG; Chen TS; King MA
    J Am Diet Assoc; 1978 Oct; 73(4):406-10. PubMed ID: 701671
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.