These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36375053)

  • 1. Accelerating the discovery of novel magnetic materials using machine learning-guided adaptive feedback.
    Xia W; Sakurai M; Balasubramanian B; Liao T; Wang R; Zhang C; Sun H; Ho KM; Chelikowsky JR; Sellmyer DJ; Wang CZ
    Proc Natl Acad Sci U S A; 2022 Nov; 119(47):e2204485119. PubMed ID: 36375053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput search for new permanent magnet materials.
    Goll D; Loeffler R; Herbst J; Karimi R; Schneider G
    J Phys Condens Matter; 2014 Feb; 26(6):064208. PubMed ID: 24469111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting.
    Martínez-Sánchez H; Gámez JD; Valenzuela JL; Colorado HD; Marín L; Rodríguez LA; Snoeck E; Gatel C; Zamora LE; Pérez Alcázar GA; Tabares JA
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rare-earth-free magnetically hard ferrous materials.
    Shao Z; Ren S
    Nanoscale Adv; 2020 Oct; 2(10):4341-4349. PubMed ID: 36132925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicological evaluation of MnAl based permanent magnets using different in vitro models.
    Rumbo C; Espina CC; Popov VV; Skokov K; Tamayo-Ramos JA
    Chemosphere; 2021 Jan; 263():128343. PubMed ID: 33297268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets.
    Kusne AG; Gao T; Mehta A; Ke L; Nguyen MC; Ho KM; Antropov V; Wang CZ; Kramer MJ; Long C; Takeuchi I
    Sci Rep; 2014 Sep; 4():6367. PubMed ID: 25220062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metastable cobalt nitride structures with high magnetic anisotropy for rare-earth free magnets.
    Zhao X; Ke L; Wang CZ; Ho KM
    Phys Chem Chem Phys; 2016 Nov; 18(46):31680-31690. PubMed ID: 27841387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fascinating Magnetic Energy Storage Nanomaterials: A Brief Review.
    Sreenivasulu KV; Srikanth VVSS
    Recent Pat Nanotechnol; 2017 Jul; 11(2):116-122. PubMed ID: 28286941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.
    Lixandru A; Venkatesan P; Jönsson C; Poenaru I; Hall B; Yang Y; Walton A; Güth K; Gauß R; Gutfleisch O
    Waste Manag; 2017 Oct; 68():482-489. PubMed ID: 28751173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient.
    Gutfleisch O; Willard MA; Brück E; Chen CH; Sankar SG; Liu JP
    Adv Mater; 2011 Feb; 23(7):821-42. PubMed ID: 21294168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-performance permanent magnets.
    Goll D; Kronmüller H
    Naturwissenschaften; 2000 Oct; 87(10):423-38. PubMed ID: 11129942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inspired by nature: investigating tetrataenite for permanent magnet applications.
    Lewis LH; Mubarok A; Poirier E; Bordeaux N; Manchanda P; Kashyap A; Skomski R; Goldstein J; Pinkerton FE; Mishra RK; Kubic RC; Barmak K
    J Phys Condens Matter; 2014 Feb; 26(6):064213. PubMed ID: 24469336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZnCl
    Ding A; Liu C; Zhang X; Lei L; Xiao C
    Environ Sci Technol; 2022 Apr; 56(7):4404-4412. PubMed ID: 35286072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-Driven Real-Time Magnetic Tracking Applied to Myokinetic Interfaces.
    Mendez SP; Gherardini M; Santos GVP; Munoz DM; Ayala HVH; Cipriani C
    IEEE Trans Biomed Circuits Syst; 2022 Apr; 16(2):266-274. PubMed ID: 35316192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large magnetic anisotropy in Co-Fe-Ni-N ordered structures: a first-principles study.
    Islam R; Borah JP
    J Phys Condens Matter; 2021 Dec; 34(9):. PubMed ID: 34918625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rare-earth-free high energy product manganese-based magnetic materials.
    Patel K; Zhang J; Ren S
    Nanoscale; 2018 Jul; 10(25):11701-11718. PubMed ID: 29901670
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic strength and corrosion of rare earth magnets.
    Ahmad KA; Drummond JL; Graber T; BeGole E
    Am J Orthod Dentofacial Orthop; 2006 Sep; 130(3):275.e11-5. PubMed ID: 16979482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards high-performance permanent magnets without rare earths.
    Kuz'min MD; Skokov KP; Jian H; Radulov I; Gutfleisch O
    J Phys Condens Matter; 2014 Feb; 26(6):064205. PubMed ID: 24469009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal stability of MnBi magnetic materials.
    Cui J; Choi JP; Li G; Polikarpov E; Darsell J; Overman N; Olszta M; Schreiber D; Bowden M; Droubay T
    J Phys Condens Matter; 2014 Feb; 26(6):064212. PubMed ID: 24469323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.