These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 36375089)
1. Mechanistic Insights into the Oxidative and Reductive Quenching Cycles of Transition Metal Photoredox Catalysts through Effective Oxidation State Analysis. Medina E; Sandoval-Pauker C; Salvador P; Pinter B Inorg Chem; 2022 Nov; 61(47):18923-18933. PubMed ID: 36375089 [TBL] [Abstract][Full Text] [Related]
2. Electron Density Difference Analysis on the Oxidative and Reductive Quenching Cycles of Classical Iridium and Ruthenium Photoredox Catalysts. Medina E; Pinter B J Phys Chem A; 2020 May; 124(21):4223-4234. PubMed ID: 32364751 [TBL] [Abstract][Full Text] [Related]
3. Electronic structure analysis of copper photoredox catalysts using the quasi-restricted orbital approach. Sandoval-Pauker C; Pinter B J Chem Phys; 2022 Aug; 157(7):074306. PubMed ID: 35987572 [TBL] [Abstract][Full Text] [Related]
5. Direct Evidence for Excited Ligand Field State-based Oxidative Photoredox Chemistry of a Cobalt(III) Polypyridyl Photosensitizer. Alowakennu MM; Ghosh A; McCusker JK J Am Chem Soc; 2023 Sep; 145(38):20786-20791. PubMed ID: 37703518 [TBL] [Abstract][Full Text] [Related]
6. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives. Pitre SP; McTiernan CD; Scaiano JC Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767 [TBL] [Abstract][Full Text] [Related]
7. Ligand- and Metal-Based Reactivity of a Neutral Ruthenium Diolefin Diazadiene Complex: The Innocent, the Guilty and the Suspicious. Sinha V; Pribanic B; de Bruin B; Trincado M; Grützmacher H Chemistry; 2018 Apr; 24(21):5513-5521. PubMed ID: 29341297 [TBL] [Abstract][Full Text] [Related]
8. The semiquinone-ruthenium combination as a remarkably invariant feature in the redox and substitution series [Ru(Q)(n)(acac)(3-n)](m), n = 1-3; m = (-2), -1, 0, +1, (+2); Q = 4,6-Di-tert-butyl-N-phenyl-o-iminobenzoquinone. Das D; Das AK; Sarkar B; Mondal TK; Mobin SM; Fiedler J; Zális S; Urbanos FA; Jiménez-Aparicio R; Kaim W; Lahiri GK Inorg Chem; 2009 Dec; 48(24):11853-64. PubMed ID: 19928984 [TBL] [Abstract][Full Text] [Related]
9. Facing the Challenges of Borderline Oxidation State Assignments Using State-of-the-Art Computational Methods. Gimferrer M; Van der Mynsbrugge J; Bell AT; Salvador P; Head-Gordon M Inorg Chem; 2020 Oct; 59(20):15410-15420. PubMed ID: 33030893 [TBL] [Abstract][Full Text] [Related]
10. Fusion Position-Dependent Aromatic Transitions of Ligand Backbone Rings for Controlling the Redox Energetics of Photoredox Catalysts. Girnt P; Molina-Aguirre G; Gomez Bustos D; Sandoval Pauker C; Vuković L; Pinter B Inorg Chem; 2024 Feb; 63(5):2586-2596. PubMed ID: 38251823 [TBL] [Abstract][Full Text] [Related]
11. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes. Reiser O Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932 [TBL] [Abstract][Full Text] [Related]
12. Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies. Kubin M; Guo M; Kroll T; Löchel H; Källman E; Baker ML; Mitzner R; Gul S; Kern J; Föhlisch A; Erko A; Bergmann U; Yachandra V; Yano J; Lundberg M; Wernet P Chem Sci; 2018 Sep; 9(33):6813-6829. PubMed ID: 30310614 [TBL] [Abstract][Full Text] [Related]
13. Electron-Spin Structure and Metal-Ligand Bonding in Open-Shell Systems from Relativistic EPR and NMR: A Case Study of Square-Planar Iridium Catalysts. Bora PL; Novotný J; Ruud K; Komorovsky S; Marek R J Chem Theory Comput; 2019 Jan; 15(1):201-214. PubMed ID: 30485092 [TBL] [Abstract][Full Text] [Related]
14. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations. Sarkar B; Patra S; Fiedler J; Sunoj RB; Janardanan D; Lahiri GK; Kaim W J Am Chem Soc; 2008 Mar; 130(11):3532-42. PubMed ID: 18290644 [TBL] [Abstract][Full Text] [Related]
15. Shedding Light on the Oxidizing Properties of Spin-Flip Excited States in a Cr Bürgin TH; Glaser F; Wenger OS J Am Chem Soc; 2022 Aug; 144(31):14181-14194. PubMed ID: 35913126 [TBL] [Abstract][Full Text] [Related]
16. Steric influence on the excited-state lifetimes of ruthenium complexes with bipyridyl-alkanylene-pyridyl ligands. Abrahamsson M; Lundqvist MJ; Wolpher H; Johansson O; Eriksson L; Bergquist J; Rasmussen T; Becker HC; Hammarström L; Norrby PO; Akermark B; Persson P Inorg Chem; 2008 May; 47(9):3540-8. PubMed ID: 18402440 [TBL] [Abstract][Full Text] [Related]
17. How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Butschke B; Fillman KL; Bendikov T; Shimon LJ; Diskin-Posner Y; Leitus G; Gorelsky SI; Neidig ML; Milstein D Inorg Chem; 2015 May; 54(10):4909-26. PubMed ID: 25918944 [TBL] [Abstract][Full Text] [Related]
18. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions. Lv Z; Zheng W; Chen Z; Tang Z; Mo W; Yin G Dalton Trans; 2016 Jul; 45(28):11369-83. PubMed ID: 27333442 [TBL] [Abstract][Full Text] [Related]
19. Dinickel Active Sites Supported by Redox-Active Ligands. Uyeda C; Farley CM Acc Chem Res; 2021 Oct; 54(19):3710-3719. PubMed ID: 34565142 [TBL] [Abstract][Full Text] [Related]
20. Redox Metal-Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH with Macrocyclic Copper Complexes. Garrido-Barros P; Moonshiram D; Gil-Sepulcre M; Pelosin P; Gimbert-Suriñach C; Benet-Buchholz J; Llobet A J Am Chem Soc; 2020 Oct; 142(41):17434-17446. PubMed ID: 32935982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]