BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36375226)

  • 1. Carboxylesterase-2 plays a critical role in dabigatran etexilate active metabolite formation.
    Laizure SC; Chen F; Farrar JE; Ali D; Yang B; Parker RB
    Drug Metab Pharmacokinet; 2022 Dec; 47():100479. PubMed ID: 36375226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of carboxylesterase-dependent dabigatran etexilate hydrolysis.
    Laizure SC; Parker RB; Herring VL; Hu ZY
    Drug Metab Dispos; 2014 Feb; 42(2):201-6. PubMed ID: 24212379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dabigatran etexilate activation is affected by the CES1 genetic polymorphism G143E (rs71647871) and gender.
    Shi J; Wang X; Nguyen JH; Bleske BE; Liang Y; Liu L; Zhu HJ
    Biochem Pharmacol; 2016 Nov; 119():76-84. PubMed ID: 27614009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conventional liquid chromatography/triple quadrupole mass spectrometry based metabolite identification and semi-quantitative estimation approach in the investigation of in vitro dabigatran etexilate metabolism.
    Hu ZY; Parker RB; Herring VL; Laizure SC
    Anal Bioanal Chem; 2013 Feb; 405(5):1695-704. PubMed ID: 23239178
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of endogenous esterase activity on in vitro p-glycoprotein profiling of dabigatran etexilate in Caco-2 monolayers.
    Ishiguro N; Kishimoto W; Volz A; Ludwig-Schwellinger E; Ebner T; Schaefer O
    Drug Metab Dispos; 2014 Feb; 42(2):250-6. PubMed ID: 24212377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presence and inter-individual variability of carboxylesterases (CES1 and CES2) in human lung.
    Gabriele M; Puccini P; Lucchi M; Vizziello A; Gervasi PG; Longo V
    Biochem Pharmacol; 2018 Apr; 150():64-71. PubMed ID: 29407485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of recombinant human carboxylesterases: fluorescein diacetate as a probe substrate for human carboxylesterase 2.
    Wang J; Williams ET; Bourgea J; Wong YN; Patten CJ
    Drug Metab Dispos; 2011 Aug; 39(8):1329-33. PubMed ID: 21540359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro drug metabolism by human carboxylesterase 1: focus on angiotensin-converting enzyme inhibitors.
    Thomsen R; Rasmussen HB; Linnet K;
    Drug Metab Dispos; 2014 Jan; 42(1):126-33. PubMed ID: 24141856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of alcohol on human carboxylesterase drug metabolism.
    Parker RB; Hu ZY; Meibohm B; Laizure SC
    Clin Pharmacokinet; 2015 Jun; 54(6):627-38. PubMed ID: 25511794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of Human Liver and Intestinal Carboxylesterases to the Hydrolysis of Selexipag In Vitro.
    Imai S; Ichikawa T; Sugiyama C; Nonaka K; Yamada T
    J Pharm Sci; 2019 Feb; 108(2):1027-1034. PubMed ID: 30267780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-Dependent Human Hepatic Carboxylesterase 1 (CES1) and Carboxylesterase 2 (CES2) Postnatal Ontogeny.
    Hines RN; Simpson PM; McCarver DG
    Drug Metab Dispos; 2016 Jul; 44(7):959-66. PubMed ID: 26825642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pharmacogenetics of carboxylesterases: CES1 and CES2 genetic variants and their clinical effect.
    Merali Z; Ross S; Paré G
    Drug Metabol Drug Interact; 2014; 29(3):143-51. PubMed ID: 24988246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Difference in substrate specificity of carboxylesterase and arylacetamide deacetylase between dogs and humans.
    Yoshida T; Fukami T; Kurokawa T; Gotoh S; Oda A; Nakajima M
    Eur J Pharm Sci; 2018 Jan; 111():167-176. PubMed ID: 28966098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of arylacetamide deacetylase and carboxylesterase 2 to flutamide hydrolysis in human liver.
    Kobayashi Y; Fukami T; Shimizu M; Nakajima M; Yokoi T
    Drug Metab Dispos; 2012 Jun; 40(6):1080-4. PubMed ID: 22446520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of LC-MSMS assay for the determination of the prodrug dabigatran etexilate and its active metabolites in human plasma.
    Nouman EG; Al-Ghobashy MA; Lotfy HM
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 989():37-45. PubMed ID: 25797721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Potentially Significant Role of CYP3A-Mediated Oxidative Metabolism of Dabigatran Etexilate and Its Intermediate Metabolites in Drug-Drug Interaction Assessments Using Microdose Dabigatran Etexilate.
    Udomnilobol U; Jianmongkol S; Prueksaritanont T
    Drug Metab Dispos; 2023 Sep; 51(9):1216-1226. PubMed ID: 37230768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of carboxylesterase 1 and impact of natural genetic variants on the hydrolysis of trandolapril.
    Zhu HJ; Appel DI; Johnson JA; Chavin KD; Markowitz JS
    Biochem Pharmacol; 2009 Apr; 77(7):1266-72. PubMed ID: 19185566
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of the carboxylesterase phenotype in human liver.
    Ross MK; Borazjani A; Wang R; Crow JA; Xie S
    Arch Biochem Biophys; 2012 Jun; 522(1):44-56. PubMed ID: 22525521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different hydrolases involved in bioactivation of prodrug-type angiotensin receptor blockers: carboxymethylenebutenolidase and carboxylesterase 1.
    Ishizuka T; Yoshigae Y; Murayama N; Izumi T
    Drug Metab Dispos; 2013 Nov; 41(11):1888-95. PubMed ID: 23946449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of carboxylesterases and its impact on pharmacokinetics and pharmacodynamics: an up-to-date review.
    Liu Y; Li J; Zhu HJ
    Expert Opin Drug Metab Toxicol; 2024 May; 20(5):377-397. PubMed ID: 38706437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.