These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 36375430)

  • 1. Assessing the suitability of solar dryers applied to wastewater plants: A review.
    Gomes LACN; Gonçalves RF; Martins MF; Sogari CN
    J Environ Manage; 2023 Jan; 326(Pt A):116640. PubMed ID: 36375430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of solar sludge drying alternatives by costs and area requirements.
    Kurt M; Aksoy A; Sanin FD
    Water Res; 2015 Oct; 82():47-57. PubMed ID: 26025600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solar drying of wastewater sludge: a case study in Marrakesh, Morocco.
    Belloulid MO; Hamdi H; Mandi L; Ouazzani N
    Environ Technol; 2019 Apr; 40(10):1316-1322. PubMed ID: 29280674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable management of biological solids in small treatment plants: overview of strategies and reuse options for a solar drying facility in Poland.
    Boguniewicz-Zablocka J; Klosok-Bazan I; Capodaglio AG
    Environ Sci Pollut Res Int; 2021 May; 28(19):24680-24693. PubMed ID: 32710361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient solar drying techniques: a review.
    Jangde PK; Singh A; Arjunan TV
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):50970-50983. PubMed ID: 34374011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar drying of granulated waste blends for dry biofuel production.
    Wzorek M
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34290-34299. PubMed ID: 33634405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Environmental assessment of different dewatering and drying methods on the basis of life cycle assessment.
    Stefaniak J; Zelazna A; Pawłowski A
    Water Sci Technol; 2014; 69(4):783-8. PubMed ID: 24569277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of the solar drying process of sludge using thermal storage.
    Poblete R; Painemal O
    J Environ Manage; 2020 Feb; 255():109883. PubMed ID: 31765947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar-thermic sewage sludge treatment in extreme alpine environments.
    Becker W; Schoen MA; Wett B
    Water Sci Technol; 2007; 56(11):1-9. PubMed ID: 18057635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eco-friendly drying techniques: a comparison of solar, biomass, and hybrid dryers.
    Prabhu N; Saravanan D; Kumarasamy S
    Environ Sci Pollut Res Int; 2023 Sep; 30(42):95086-95105. PubMed ID: 37582893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance improvement and advancement studies of mixed-mode solar thermal dryers: a review.
    Mehta P; Bhatt N; Bassan G; Kabeel AE
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):62822-62838. PubMed ID: 35804232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmarking the sustainability of sludge handling systems in small wastewater treatment plants.
    Archer G; Jin C; Parker W
    J Environ Manage; 2020 Feb; 256():109893. PubMed ID: 31822457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From municipal/industrial wastewater sludge and FOG to fertilizer: A proposal for economic sustainable sludge management.
    Bratina B; Šorgo A; Kramberger J; Ajdnik U; Zemljič LF; Ekart J; Šafarič R
    J Environ Manage; 2016 Dec; 183(Pt 3):1009-1025. PubMed ID: 27692514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Performance Evaluation of a Novel Solar Dryer Integrated with Thermal Energy Storage System for Drying of Agricultural Products.
    Rulazi EL; Marwa J; Kichonge B; Kivevele T
    ACS Omega; 2023 Nov; 8(45):43304-43317. PubMed ID: 38024705
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.
    Collard M; Teychené B; Lemée L
    J Environ Manage; 2017 Dec; 203(Pt 2):760-767. PubMed ID: 27292580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercritical carbon dioxide drying of municipal sewage sludge - Novel waste-to-energy valorization pathway.
    Aggarwal S; Hakovirta M
    J Environ Manage; 2021 May; 285():112148. PubMed ID: 33588163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.
    Pan Y; Ye L; van den Akker B; Ganigué Pagès R; Musenze RS; Yuan Z
    Environ Sci Technol; 2016 Feb; 50(3):1368-75. PubMed ID: 26642353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mini-review of inventory data for the dewatering and drying of sewage sludge.
    Chang H; Zhao Y; Xu A; Damgaard A; Christensen TH
    Waste Manag Res; 2023 Jun; 41(6):1081-1088. PubMed ID: 36633153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of solar and solar-assisted drying of fresh produce: state of the art, drying kinetics, and product qualities.
    Boateng ID
    J Sci Food Agric; 2023 Oct; 103(13):6137-6149. PubMed ID: 37097259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.