These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
105 related articles for article (PubMed ID: 36375435)
1. Recovery of Ni matte from Ni-bearing electroplating sludge. Wang HY; Li Y; Jiao SQ; Chou KC; Zhang GH J Environ Manage; 2023 Jan; 326(Pt A):116744. PubMed ID: 36375435 [TBL] [Abstract][Full Text] [Related]
2. Treating waste with waste: Metals recovery from electroplating sludge using spent cathode carbon combustion dust and copper refining slag. Xiao Y; Li L; Huang M; Liu Y; Xu J; Xu Z; Lei Y Sci Total Environ; 2022 Sep; 838(Pt 3):156453. PubMed ID: 35660588 [TBL] [Abstract][Full Text] [Related]
3. Recovery of valuable metals from electroplating sludge with reducing additives via vitrification. Huang R; Huang KL; Lin ZY; Wang JW; Lin C; Kuo YM J Environ Manage; 2013 Nov; 129():586-92. PubMed ID: 24036091 [TBL] [Abstract][Full Text] [Related]
4. Stepwise recycling of Fe, Cu, Zn and Ni from real electroplating sludge via coupled acidic leaching and hydrothermal and extraction routes. Yuxin Z; Ting S; Hongyu C; Ying Z; Zhi G; Suiyi Z; Xinfeng X; Hong Z; Yidi G; Yang H Environ Res; 2023 Jan; 216(Pt 1):114462. PubMed ID: 36191617 [TBL] [Abstract][Full Text] [Related]
5. A novel method for effective solidifying chromium and preparing crude stainless steel from multi-metallic electroplating sludge. Heng W; Yong Y; Jianhang H; Hua W J Hazard Mater; 2024 Mar; 465():133068. PubMed ID: 38043422 [TBL] [Abstract][Full Text] [Related]
6. Near-complete recycling of real mix electroplating sludge as valuable metals via Fe/Cr co-crystallization and stepwise extraction route. Zhu S; Zhang Y; Xin L; Htet Oo K; Zheng M; Ma S; Guo J; Chen Y J Environ Manage; 2024 May; 358():120821. PubMed ID: 38599087 [TBL] [Abstract][Full Text] [Related]
7. Synthesis of ceramic pigments from industrial wastes: Red mud and electroplating sludge. Carneiro J; Tobaldi DM; Capela MN; Novais RM; Seabra MP; Labrincha JA Waste Manag; 2018 Oct; 80():371-378. PubMed ID: 30455018 [TBL] [Abstract][Full Text] [Related]
8. Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching. Li C; Xie F; Ma Y; Cai T; Li H; Huang Z; Yuan G J Hazard Mater; 2010 Jun; 178(1-3):823-33. PubMed ID: 20197211 [TBL] [Abstract][Full Text] [Related]
9. Develop spinel structure and quantify phase transformation for nickel stabilization in electroplating sludge. Xia Y; Meng F; Lv Z; Zhang J; Tang Y; Shih K Waste Manag; 2021 Jul; 131():286-293. PubMed ID: 34198182 [TBL] [Abstract][Full Text] [Related]
10. Co-treatment of electroplating sludge, copper slag, and spent cathode carbon for recovering and solidifying heavy metals. Yong Y; Hua W; Jianhang H J Hazard Mater; 2021 Sep; 417():126020. PubMed ID: 33992022 [TBL] [Abstract][Full Text] [Related]
11. Effect of NaOH on the vitrification process of waste Ni-Cr sludge. Chou IC; Wang YF; Chang CP; Wang CT; Kuo YM J Hazard Mater; 2011 Jan; 185(2-3):1522-7. PubMed ID: 21112144 [TBL] [Abstract][Full Text] [Related]
12. Stabilization/solidification of chromium-bearing electroplating sludge with alkali-activated slag binders. Chen H; Yuan H; Mao L; Hashmi MZ; Xu F; Tang X Chemosphere; 2020 Feb; 240():124885. PubMed ID: 31568939 [TBL] [Abstract][Full Text] [Related]
13. Nickel recovery from electroplating sludge via bipolar membrane electrodialysis. Liu Y; Lian R; Wu X; Dai L; Ding J; Wu X; Ye X; Chen R; Ding R; Liu J; Van der Bruggen B J Colloid Interface Sci; 2023 May; 637():431-440. PubMed ID: 36716667 [TBL] [Abstract][Full Text] [Related]
14. Stepwise extraction of Fe, Al, Ca, and Zn: A green route to recycle raw electroplating sludge. Qu Z; Su T; Zhu S; Chen Y; Yu Y; Xie X; Yang J; Huo M; Bian D J Environ Manage; 2021 Dec; 300():113700. PubMed ID: 34517231 [TBL] [Abstract][Full Text] [Related]
15. A metallurgical approach for separation and recovery of Cu, Cr, and Ni from electroplating sludge. Xiao Y; Li L; He J; Sun Y; Lei Y Sci Total Environ; 2024 Apr; 921():171130. PubMed ID: 38401729 [TBL] [Abstract][Full Text] [Related]
16. The influence of heavy metals on the polymorphs of dicalcium silicate in the belite-rich clinkers produced from electroplating sludge. Chen YL; Shih PH; Chiang LC; Chang YK; Lu HC; Chang JE J Hazard Mater; 2009 Oct; 170(1):443-8. PubMed ID: 19464111 [TBL] [Abstract][Full Text] [Related]
17. Resource utilization of hazardous Cr/Fe-rich sludge: synthesis of erdite flocculant to treat real electroplating wastewater. Yu C; Ying Z; Yanwen L; Suiyi Z; Dongxu L; Tong S; Xinfeng X; Xianze W J Environ Health Sci Eng; 2022 Jun; 20(1):509-519. PubMed ID: 35669836 [TBL] [Abstract][Full Text] [Related]
18. Comparative study of electroplating sludge reutilization in China: environmental and economic performances. Li T; Wei G; Liu H; Gong Y; Zhao H; Wang Y; Wang J Environ Sci Pollut Res Int; 2023 Oct; 30(48):106598-106610. PubMed ID: 37733201 [TBL] [Abstract][Full Text] [Related]
19. A green method to clean copper slag and rapidly recover copper resources via reduction-sulfurizing smelting and super-gravity separation at low temperature. Wang Z; Gao J; Lan X; Guo Z J Hazard Mater; 2024 Apr; 468():133834. PubMed ID: 38387176 [TBL] [Abstract][Full Text] [Related]
20. [Thermal analysis and the distribution rule of heavy metals during electroplating sludge combustion]. Tan ZX; Yan JH; Jiang XG; Xue HD; Chi Y Huan Jing Ke Xue; 2006 May; 27(5):998-1002. PubMed ID: 16850848 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]