These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 36375561)
41. Male pelvic multi-organ segmentation aided by CBCT-based synthetic MRI. Lei Y; Wang T; Tian S; Dong X; Jani AB; Schuster D; Curran WJ; Patel P; Liu T; Yang X Phys Med Biol; 2020 Feb; 65(3):035013. PubMed ID: 31851956 [TBL] [Abstract][Full Text] [Related]
42. Inter-fractional portability of deep learning models for lung target tracking on cine imaging acquired in MRI-guided radiotherapy. Peng J; Stowe HB; Samson PP; Robinson CG; Yang C; Hu W; Zhang Z; Kim T; Hugo GD; Mazur TR; Cai B Phys Eng Sci Med; 2024 Jun; 47(2):769-777. PubMed ID: 38198064 [TBL] [Abstract][Full Text] [Related]
43. Synthetic MRI-aided multi-organ segmentation on male pelvic CT using cycle consistent deep attention network. Dong X; Lei Y; Tian S; Wang T; Patel P; Curran WJ; Jani AB; Liu T; Yang X Radiother Oncol; 2019 Dec; 141():192-199. PubMed ID: 31630868 [TBL] [Abstract][Full Text] [Related]
44. Evaluation of therapeutic radiographer contouring for magnetic resonance image guided online adaptive prostate radiotherapy. Adair Smith G; Dunlop A; Alexander SE; Barnes H; Casey F; Chick J; Gunapala R; Herbert T; Lawes R; Mason SA; Mitchell A; Mohajer J; Murray J; Nill S; Patel P; Pathmanathan A; Sritharan K; Sundahl N; Tree AC; Westley R; Williams B; McNair HA Radiother Oncol; 2023 Mar; 180():109457. PubMed ID: 36608770 [TBL] [Abstract][Full Text] [Related]
45. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248 [TBL] [Abstract][Full Text] [Related]
46. Evaluating the clinical acceptability of deep learning contours of prostate and organs-at-risk in an automated prostate treatment planning process. Duan J; Bernard M; Downes L; Willows B; Feng X; Mourad WF; St Clair W; Chen Q Med Phys; 2022 Apr; 49(4):2570-2581. PubMed ID: 35147216 [TBL] [Abstract][Full Text] [Related]
47. Automatic Contour Refinement for Deep Learning Auto-segmentation of Complex Organs in MRI-guided Adaptive Radiation Therapy. Ding J; Zhang Y; Amjad A; Xu J; Thill D; Li XA Adv Radiat Oncol; 2022; 7(5):100968. PubMed ID: 35847549 [TBL] [Abstract][Full Text] [Related]
48. Automatic Segmentation Using Deep Learning to Enable Online Dose Optimization During Adaptive Radiation Therapy of Cervical Cancer. Rigaud B; Anderson BM; Yu ZH; Gobeli M; Cazoulat G; Söderberg J; Samuelsson E; Lidberg D; Ward C; Taku N; Cardenas C; Rhee DJ; Venkatesan AM; Peterson CB; Court L; Svensson S; Löfman F; Klopp AH; Brock KK Int J Radiat Oncol Biol Phys; 2021 Mar; 109(4):1096-1110. PubMed ID: 33181248 [TBL] [Abstract][Full Text] [Related]
49. Clinical Validation of a Deep-Learning Segmentation Software in Head and Neck: An Early Analysis in a Developing Radiation Oncology Center. D'Aviero A; Re A; Catucci F; Piccari D; Votta C; Piro D; Piras A; Di Dio C; Iezzi M; Preziosi F; Menna S; Quaranta F; Boschetti A; Marras M; Miccichè F; Gallus R; Indovina L; Bussu F; Valentini V; Cusumano D; Mattiucci GC Int J Environ Res Public Health; 2022 Jul; 19(15):. PubMed ID: 35897425 [TBL] [Abstract][Full Text] [Related]
50. Deep-learning-based joint rigid and deformable contour propagation for magnetic resonance imaging-guided prostate radiotherapy. Kolenbrander ID; Maspero M; Hendriksen AA; Pollitt R; van der Voort van Zyp JRN; van den Berg CAT; Pluim JPW; van Eijnatten MAJM Med Phys; 2024 Apr; 51(4):2367-2377. PubMed ID: 38408022 [TBL] [Abstract][Full Text] [Related]
51. Deep learning-based automatic contour quality assurance for auto-segmented abdominal MR-Linac contours. Zarenia M; Zhang Y; Sarosiek C; Conlin R; Amjad A; Paulson E Phys Med Biol; 2024 Oct; 69(21):. PubMed ID: 39413822 [No Abstract] [Full Text] [Related]
52. An uncertainty-aware deep learning architecture with outlier mitigation for prostate gland segmentation in radiotherapy treatment planning. Li X; Bagher-Ebadian H; Gardner S; Kim J; Elshaikh M; Movsas B; Zhu D; Chetty IJ Med Phys; 2023 Jan; 50(1):311-322. PubMed ID: 36112996 [TBL] [Abstract][Full Text] [Related]
53. A comparative study on automatic treatment planning for online adaptive proton therapy of esophageal cancer: which combination of deformable registration and deep learning planning tools performs the best? Draguet C; Populaire P; Vera MC; Fredriksson A; Haustermans K; Lee JA; Barragán-Montero AM; Sterpin E Phys Med Biol; 2024 Oct; 69(20):. PubMed ID: 39332445 [No Abstract] [Full Text] [Related]
54. Head and neck multi-organ auto-segmentation on CT images aided by synthetic MRI. Liu Y; Lei Y; Fu Y; Wang T; Zhou J; Jiang X; McDonald M; Beitler JJ; Curran WJ; Liu T; Yang X Med Phys; 2020 Sep; 47(9):4294-4302. PubMed ID: 32648602 [TBL] [Abstract][Full Text] [Related]
55. Automatic contouring of normal tissues with deep learning for preclinical radiation studies. Lappas G; Wolfs CJA; Staut N; Lieuwes NG; Biemans R; van Hoof SJ; Dubois LJ; Verhaegen F Phys Med Biol; 2022 Feb; 67(4):. PubMed ID: 35061600 [No Abstract] [Full Text] [Related]
56. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets. Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206 [TBL] [Abstract][Full Text] [Related]
57. Deep Learning for Per-Fraction Automatic Segmentation of Gross Tumor Volume (GTV) and Organs at Risk (OARs) in Adaptive Radiotherapy of Cervical Cancer. Breto AL; Spieler B; Zavala-Romero O; Alhusseini M; Patel NV; Asher DA; Xu IR; Baikovitz JB; Mellon EA; Ford JC; Stoyanova R; Portelance L Front Oncol; 2022; 12():854349. PubMed ID: 35664789 [TBL] [Abstract][Full Text] [Related]
58. Augmenting atlas-based liver segmentation for radiotherapy treatment planning by incorporating image features proximal to the atlas contours. Li D; Liu L; Chen J; Li H; Yin Y; Ibragimov B; Xing L Phys Med Biol; 2017 Jan; 62(1):272-288. PubMed ID: 27991439 [TBL] [Abstract][Full Text] [Related]
59. Clinical evaluation of deep learning-based clinical target volume three-channel auto-segmentation algorithm for adaptive radiotherapy in cervical cancer. Ma CY; Zhou JY; Xu XT; Qin SB; Han MF; Cao XH; Gao YZ; Xu L; Zhou JJ; Zhang W; Jia LC BMC Med Imaging; 2022 Jul; 22(1):123. PubMed ID: 35810273 [TBL] [Abstract][Full Text] [Related]
60. Automated segmentation in pelvic radiotherapy: A comprehensive evaluation of ATLAS-, machine learning-, and deep learning-based models. Bordigoni B; Trivellato S; Pellegrini R; Meregalli S; Bonetto E; Belmonte M; Castellano M; Panizza D; Arcangeli S; De Ponti E Phys Med; 2024 Sep; 125():104486. PubMed ID: 39098106 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]