These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36375702)

  • 1. Enhanced mesophilic fermentation of waste activated sludge by integration with in-situ nitrate reduction.
    Li X; Wang B; Ma Y; Jiang T; Peng Y
    Bioresour Technol; 2023 Jan; 368():128317. PubMed ID: 36375702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate addition improves hydrogen production from acidic fermentation of waste activated sludge.
    Wang Y; Wang D; Chen F; Yang Q; Ni BJ; Wang Q; Sun J; Li X; Liu Y
    Chemosphere; 2019 Nov; 235():814-824. PubMed ID: 31280050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapidly achieving partial denitrification from nitrate wastewater in a alkaline fermentation system with primary sludge as inoculated sludge and fermentable substrate.
    Hao Z; Zhang L; Zhang Q; Peng Y; Shi L; Li Y
    Bioresour Technol; 2022 Sep; 360():127528. PubMed ID: 35760246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of diclofenac on the production of volatile fatty acids from anaerobic fermentation of waste activated sludge.
    Hu J; Zhao J; Wang D; Li X; Zhang D; Xu Q; Peng L; Yang Q; Zeng G
    Bioresour Technol; 2018 Apr; 254():7-15. PubMed ID: 29413941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of primary and secondary sludge carbon sources derived from hydrolysis or acidogenesis for nitrate reduction and denitrification kinetics: Organics utilization and microbial community shift.
    Guo Y; Guo L; Jin C; Zhao Y; Gao M; Ji J; She Z; Giesy JP
    Environ Res; 2022 Sep; 212(Pt C):113403. PubMed ID: 35525291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using excess sludge as carbon source for enhanced nitrogen removal and sludge reduction with hydrolysis technology.
    Gao YQ; Peng YZ; Zhang JY; Wang JL; Ye L
    Water Sci Technol; 2010; 62(7):1536-43. PubMed ID: 20935370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of clarithromycin on the production of volatile fatty acids from waste activated sludge anaerobic fermentation.
    Huang X; Xu Q; Wu Y; Wang D; Yang Q; Chen F; Wu Y; Pi Z; Chen Z; Li X; Zhong Q
    Bioresour Technol; 2019 Sep; 288():121598. PubMed ID: 31176944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic partial denitrification, anammox and in-situ fermentation (SPDAF) process for treating domestic and nitrate wastewater: Response of nitrogen removal performance to decreasing temperature.
    Liu X; Li X; Peng Y; Zhang Q; Jiang H; Ji J
    Bioresour Technol; 2021 Dec; 342():125865. PubMed ID: 34536838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge.
    Liu X; Xu Q; Wang D; Wu Y; Yang Q; Liu Y; Wang Q; Li X; Li H; Zeng G; Yang G
    Water Res; 2019 May; 155():142-151. PubMed ID: 30844675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approach of describing dynamic production of volatile fatty acids from sludge alkaline fermentation.
    Wang D; Liu Y; Ngo HH; Zhang C; Yang Q; Peng L; He D; Zeng G; Li X; Ni BJ
    Bioresour Technol; 2017 Aug; 238():343-351. PubMed ID: 28456042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkaline fermentation of refinery waste activated sludge mediated by refinery spent caustic for volatile fatty acids production.
    Li J; Xin W; Liang J; Shang P; Song Y; Wang Q; Gamal El-Din M; Arslan M; Guo S; Chen C
    J Environ Manage; 2022 Dec; 324():116317. PubMed ID: 36182845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sewage denitrification performance and sludge properties variation with the addition of liquid from perishable organic anaerobic fermentation.
    Zhu Z; Guo Y; Zhao Y; Zhang R; Yu Y; Zhang M; Zhou T
    Bioresour Technol; 2021 Dec; 341():125821. PubMed ID: 34523552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioproduction of volatile fatty acid from the fermentation of waste activated sludge for in situ denitritation.
    Wang B; Peng Y; Guo Y; Wang S
    J Biosci Bioeng; 2016 Apr; 121(4):431-4. PubMed ID: 26475401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced nitrogen removal from sludge dewatering liquor by simultaneous primary sludge fermentation and nitrate reduction in batch and continuous reactors.
    Peng Y; Zhang L; Zhang S; Gan Y; Wu C
    Bioresour Technol; 2012 Jan; 104():144-9. PubMed ID: 22100236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of additional food waste slurry generated by mesophilic acidogenic fermentation on nutrient removal and sludge properties during wastewater treatment.
    Tang J; Pu Y; Wang XC; Hu Y; Huang J; Ngo HH; Pan S; Li Y; Zhu N
    Bioresour Technol; 2019 Dec; 294():122218. PubMed ID: 31606600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing denitrification efficiency for nitrogen removal using waste sludge alkaline fermentation liquid as external carbon source.
    Shao M; Guo L; She Z; Gao M; Zhao Y; Sun M; Guo Y
    Environ Sci Pollut Res Int; 2019 Feb; 26(5):4633-4644. PubMed ID: 30565112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing denitrification with waste sludge carbon source: the substrate metabolism process and mechanisms.
    Guo L; Guo Y; Sun M; Gao M; Zhao Y; She Z
    Environ Sci Pollut Res Int; 2018 May; 25(13):13079-13092. PubMed ID: 29484622
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recovery of phosphorus and volatile fatty acids from wastewater and food waste with an iron-flocculation sequencing batch reactor and acidogenic co-fermentation.
    Li RH; Li XY
    Bioresour Technol; 2017 Dec; 245(Pt A):615-624. PubMed ID: 28910649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH.
    Zhang P; Chen Y; Zhou Q
    Water Res; 2009 Aug; 43(15):3735-42. PubMed ID: 19555988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.