These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36375785)

  • 1. Elemental compositions of sea urchin larval cell vesicles evaluated by cryo-STEM-EDS and cryo-SEM-EDS.
    Kahil K; Kaplan-Ashiri I; Wolf SG; Rechav K; Weiner S; Addadi L
    Acta Biomater; 2023 Jan; 155():482-490. PubMed ID: 36375785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of unusual MgCa particles involved in the formation of foraminifera shells using a novel quantitative cryo SEM/EDS protocol.
    Mor Khalifa G; Kahil K; Erez J; Kaplan Ashiri I; Shimoni E; Pinkas I; Addadi L; Weiner S
    Acta Biomater; 2018 Sep; 77():342-351. PubMed ID: 30026104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular pathways of calcium transport and concentration toward mineral formation in sea urchin larvae.
    Kahil K; Varsano N; Sorrentino A; Pereiro E; Rez P; Weiner S; Addadi L
    Proc Natl Acad Sci U S A; 2020 Dec; 117(49):30957-30965. PubMed ID: 33229583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial stages of calcium uptake and mineral deposition in sea urchin embryos.
    Vidavsky N; Addadi S; Mahamid J; Shimoni E; Ben-Ezra D; Shpigel M; Weiner S; Addadi L
    Proc Natl Acad Sci U S A; 2014 Jan; 111(1):39-44. PubMed ID: 24344263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium transport into the cells of the sea urchin larva in relation to spicule formation.
    Vidavsky N; Addadi S; Schertel A; Ben-Ezra D; Shpigel M; Addadi L; Weiner S
    Proc Natl Acad Sci U S A; 2016 Nov; 113(45):12637-12642. PubMed ID: 27791140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomineralization pathways in a foraminifer revealed using a novel correlative cryo-fluorescence-SEM-EDS technique.
    Khalifa GM; Kirchenbuechler D; Koifman N; Kleinerman O; Talmon Y; Elbaum M; Addadi L; Weiner S; Erez J
    J Struct Biol; 2016 Nov; 196(2):155-163. PubMed ID: 26828113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomineralization pathways in calcifying dinoflagellates: Uptake, storage in MgCaP-rich bodies and formation of the shell.
    Jantschke A; Pinkas I; Schertel A; Addadi L; Weiner S
    Acta Biomater; 2020 Jan; 102():427-439. PubMed ID: 31785382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryo-FIB-SEM serial milling and block face imaging: Large volume structural analysis of biological tissues preserved close to their native state.
    Vidavsky N; Akiva A; Kaplan-Ashiri I; Rechav K; Addadi L; Weiner S; Schertel A
    J Struct Biol; 2016 Dec; 196(3):487-495. PubMed ID: 27693309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical Cryo-Scanning Electron Microscopy of Hydrated Polymers and Microgels.
    Liang J; Xiao X; Chou TM; Libera M
    Acc Chem Res; 2021 May; 54(10):2386-2396. PubMed ID: 33944550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-FIB preparation of whole cells and tissue for cryo-TEM: use of high-pressure frozen specimens in tubes and planchets.
    DE Winter DAM; Hsieh C; Marko M; Hayles MF
    J Microsc; 2021 Feb; 281(2):125-137. PubMed ID: 32691851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An introduction to cryo-FIB-SEM cross-sectioning of frozen, hydrated Life Science samples.
    Hayles MF; DE Winter DAM
    J Microsc; 2021 Feb; 281(2):138-156. PubMed ID: 32737879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineral-bearing vesicle transport in sea urchin embryos.
    Vidavsky N; Masic A; Schertel A; Weiner S; Addadi L
    J Struct Biol; 2015 Dec; 192(3):358-365. PubMed ID: 26431896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.
    Rao A; Seto J; Berg JK; Kreft SG; Scheffner M; Cölfen H
    J Struct Biol; 2013 Aug; 183(2):205-15. PubMed ID: 23796503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The biological regulation of sea urchin larval skeletogenesis - From genes to biomineralized tissue.
    Gildor T; Winter MR; Layous M; Hijaze E; Ben-Tabou de-Leon S
    J Struct Biol; 2021 Dec; 213(4):107797. PubMed ID: 34530133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The calcifying interface in a stony coral primary polyp: An interplay between seawater and an extracellular calcifying space.
    Mor Khalifa G; Levy S; Mass T
    J Struct Biol; 2021 Dec; 213(4):107803. PubMed ID: 34695544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization.
    Winter MR; Morgulis M; Gildor T; Cohen AR; Ben-Tabou de-Leon S
    PLoS Comput Biol; 2021 Feb; 17(2):e1008780. PubMed ID: 33617532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical workflow for cryo focused-ion-beam milling of tissues and cells for cryo-TEM tomography.
    Hsieh C; Schmelzer T; Kishchenko G; Wagenknecht T; Marko M
    J Struct Biol; 2014 Jan; 185(1):32-41. PubMed ID: 24211822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryo-focused-ion-beam applications in structural biology.
    Rigort A; Plitzko JM
    Arch Biochem Biophys; 2015 Sep; 581():122-30. PubMed ID: 25703192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocytosis in primary mesenchyme cells during sea urchin larval skeletogenesis.
    Killian CE; Wilt FH
    Exp Cell Res; 2017 Oct; 359(1):205-214. PubMed ID: 28782554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lectin uptake and incorporation into the calcitic spicule of sea urchin embryos.
    Mozingo NM
    Zygote; 2015 Jun; 23(3):467-73. PubMed ID: 24735584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.