These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 36375898)
1. Mesoporous molecular sieve-based materials for catalytic oxidation of VOC: A review. Gao W; Tang X; Yi H; Jiang S; Yu Q; Xie X; Zhuang R J Environ Sci (China); 2023 Mar; 125():112-134. PubMed ID: 36375898 [TBL] [Abstract][Full Text] [Related]
2. Noble Metal Single-Atom Catalysts for the Catalytic Oxidation of Volatile Organic Compounds. Zhang L; Xue L; Lin B; Zhao Q; Wan S; Wang Y; Jia H; Xiong H ChemSusChem; 2022 Apr; 15(7):e202102494. PubMed ID: 35049142 [TBL] [Abstract][Full Text] [Related]
3. Noble-metal-based catalysts supported on zeolites and macro-mesoporous metal oxide supports for the total oxidation of volatile organic compounds. Barakat T; Rooke JC; Tidahy HL; Hosseini M; Cousin R; Lamonier JF; Giraudon JM; De Weireld G; Su BL; Siffert S ChemSusChem; 2011 Oct; 4(10):1420-30. PubMed ID: 21957051 [TBL] [Abstract][Full Text] [Related]
4. Fundamental insights and recent advances in catalytic oxidation processes using ozone for the control of volatile organic compounds. Einaga H; Zheng X Environ Sci Pollut Res Int; 2024 Jul; 31(31):43540-43560. PubMed ID: 38909152 [TBL] [Abstract][Full Text] [Related]
5. Research Progress of a Composite Metal Oxide Catalyst for VOC Degradation. Zhang K; Ding H; Pan W; Mu X; Qiu K; Ma J; Zhao Y; Song J; Zhang Z Environ Sci Technol; 2022 Jul; 56(13):9220-9236. PubMed ID: 35580211 [TBL] [Abstract][Full Text] [Related]
6. Low-Temperature Catalytic Ozonation of Multitype VOCs over Zeolite-Supported Catalysts. Shao J; Zhai Y; Zhang L; Xiang L; Lin F Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361395 [TBL] [Abstract][Full Text] [Related]
7. Recent Advances of VOCs Catalytic Oxidation over Spinel Oxides: Catalyst Design and Reaction Mechanism. Shan C; Wang Y; Li J; Zhao Q; Han R; Liu C; Liu Q Environ Sci Technol; 2023 Jul; 57(26):9495-9514. PubMed ID: 37313598 [TBL] [Abstract][Full Text] [Related]
8. Role of Structural Defects in MnO Deng H; Kang S; Ma J; Wang L; Zhang C; He H Environ Sci Technol; 2019 Sep; 53(18):10871-10879. PubMed ID: 31415165 [TBL] [Abstract][Full Text] [Related]
9. Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO Xia Y; Xia L; Liu Y; Yang T; Deng J; Dai H J Environ Sci (China); 2018 Feb; 64():276-288. PubMed ID: 29478649 [TBL] [Abstract][Full Text] [Related]
10. Catalytic oxidation of VOCs over Mn/TiO Shu Y; Xu Y; Huang H; Ji J; Liang S; Wu M; Leung DYC Chemosphere; 2018 Oct; 208():550-558. PubMed ID: 29890493 [TBL] [Abstract][Full Text] [Related]
11. Catalytic removal of toluene using MnO Gong P; He F; Xie J; Fang D Chemosphere; 2023 Mar; 318():137938. PubMed ID: 36702414 [TBL] [Abstract][Full Text] [Related]
12. Oxy-Anionic Doping: A New Strategy for Improving Selectivity of Ru/CeO Shen K; Gao B; Xia H; Deng W; Yan J; Guo X; Guo Y; Wang X; Zhan W; Dai Q Environ Sci Technol; 2022 Jun; 56(12):8854-8863. PubMed ID: 35536552 [TBL] [Abstract][Full Text] [Related]
13. Non-thermal plasma synthesis of supported Cu-Mn-Ce mixed oxide catalyst towards highly improved catalytic performance for volatile organic compound oxidation. Ye C; Fang T; Long X; Wang H; Chen S; Zhou J Environ Sci Pollut Res Int; 2023 Jan; 30(5):11994-12004. PubMed ID: 36104644 [TBL] [Abstract][Full Text] [Related]
14. Investigation on removal of multi-component volatile organic compounds in a two-stage plasma catalytic oxidation system - Comparison of X (X=Cu, Fe, Ce and La) doped Mn Liu X; Liu J; Chen J; Zhong F Chemosphere; 2023 Jul; 329():138557. PubMed ID: 37037354 [TBL] [Abstract][Full Text] [Related]
15. Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: kinetics, mechanism, and effect of ozone. Kolar P; Kastner JR Chemosphere; 2010 Feb; 78(9):1110-5. PubMed ID: 20064651 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in volatile organic compounds abatement by catalysis and catalytic hybrid processes: A critical review. Lee JE; Ok YS; Tsang DCW; Song J; Jung SC; Park YK Sci Total Environ; 2020 Jun; 719():137405. PubMed ID: 32114230 [TBL] [Abstract][Full Text] [Related]
17. A review of volatile organic compounds (VOCs) degradation by vacuum ultraviolet (VUV) catalytic oxidation. Wu M; Huang H; Leung DYC J Environ Manage; 2022 Apr; 307():114559. PubMed ID: 35066195 [TBL] [Abstract][Full Text] [Related]
18. Boosting Ozone Catalytic Oxidation of Toluene at Room Temperature by Using Hydroxyl-Mediated MnO Zhang B; Shen Y; Liu B; Ji J; Dai W; Huang P; Zhang D; Li G; Xie R; Huang H Environ Sci Technol; 2023 May; 57(17):7041-7050. PubMed ID: 37078822 [TBL] [Abstract][Full Text] [Related]
19. Efficient Catalytic Elimination of Toxic Volatile Organic Compounds via Advanced Oxidation Process Wet Scrubbing with Bifunctional Cobalt Sulfide/Activated Carbon Catalysts. Xiang Y; Xie X; Zhong H; Xiao F; Xie R; Liu B; Guo H; Hu D; Zhang P; Huang H Environ Sci Technol; 2024 May; 58(20):8846-8856. PubMed ID: 38728579 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature VOCs oxidation performance of Pt/zeolites catalysts with hierarchical pore structure. Wang J; Shi Y; Kong F; Zhou R J Environ Sci (China); 2023 Feb; 124():505-512. PubMed ID: 36182159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]