These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36375945)
41. Regeneration of elemental sulfur in a simultaneous sulfide and nitrate removal reactor under different dissolved oxygen conditions. Wang X; Zhang Y; Zhou J; Zhang T; Chen M Bioresour Technol; 2015 Apr; 182():75-81. PubMed ID: 25682226 [TBL] [Abstract][Full Text] [Related]
42. Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm. Sharma K; Derlon N; Hu S; Yuan Z Water Res; 2014 Feb; 49():175-85. PubMed ID: 24326022 [TBL] [Abstract][Full Text] [Related]
43. Ground food waste discharge to sewer enhances methane gas emission: A lab-scale investigation. Zan F; Dai J; Jiang F; Ekama GA; Chen G Water Res; 2020 May; 174():115616. PubMed ID: 32145553 [TBL] [Abstract][Full Text] [Related]
44. A review of sulfide emissions in sewer networks: overall approach and systemic modelling. Carrera L; Springer F; Lipeme-Kouyi G; Buffiere P Water Sci Technol; 2016; 73(6):1231-42. PubMed ID: 27003062 [TBL] [Abstract][Full Text] [Related]
45. Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Zhang L; De Schryver P; De Gusseme B; De Muynck W; Boon N; Verstraete W Water Res; 2008 Jan; 42(1-2):1-12. PubMed ID: 17692889 [TBL] [Abstract][Full Text] [Related]
46. Long term performance and dynamics of microbial biofilm communities performing sulfur-oxidizing autotrophic denitrification in a moving-bed biofilm reactor. Cui YX; Biswal BK; van Loosdrecht MCM; Chen GH; Wu D Water Res; 2019 Dec; 166():115038. PubMed ID: 31505308 [TBL] [Abstract][Full Text] [Related]
47. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115 [TBL] [Abstract][Full Text] [Related]
48. Identification of controlling factors for the initiation of corrosion of fresh concrete sewers. Jiang G; Sun X; Keller J; Bond PL Water Res; 2015 Sep; 80():30-40. PubMed ID: 25992907 [TBL] [Abstract][Full Text] [Related]
49. Simultaneous control of sulfide and methane in sewers achieved by a physical approach targeting dominant active zone in sediments. Ren D; Zuo Z; Xing Y; Ji P; Yu T; Zhu D; Liu Y; Huang X Water Res; 2022 Mar; 211():118010. PubMed ID: 35021123 [TBL] [Abstract][Full Text] [Related]
50. Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia. Jiang G; Keating A; Corrie S; O'halloran K; Nguyen L; Yuan Z Water Res; 2013 Sep; 47(13):4331-9. PubMed ID: 23764584 [TBL] [Abstract][Full Text] [Related]
51. Dynamics and dynamic modelling of H2S production in sewer systems. Sharma KR; Yuan Z; de Haas D; Hamilton G; Corrie S; Keller J Water Res; 2008 May; 42(10-11):2527-38. PubMed ID: 18336860 [TBL] [Abstract][Full Text] [Related]
52. Diversion of food waste into the sulfate-laden sewer: Interaction and electron flow of sulfidogenesis and methanogenesis. Zan F; Tang W; Jiang F; Chen G Water Res; 2021 Sep; 202():117437. PubMed ID: 34298275 [TBL] [Abstract][Full Text] [Related]
54. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco. Vollertsen J; Revilla N; Hvitved-Jacobsen T; Nielsen AH Water Environ Res; 2015 Nov; 87(11):1980-9. PubMed ID: 26564586 [TBL] [Abstract][Full Text] [Related]
55. Prioritisation of odorants emitted from sewers using odour activity values. Sivret EC; Wang B; Parcsi G; Stuetz RM Water Res; 2016 Jan; 88():308-321. PubMed ID: 26512809 [TBL] [Abstract][Full Text] [Related]
56. The rapid chemically induced corrosion of concrete sewers at high H Li X; O'Moore L; Song Y; Bond PL; Yuan Z; Wilkie S; Hanzic L; Jiang G Water Res; 2019 Oct; 162():95-104. PubMed ID: 31255785 [TBL] [Abstract][Full Text] [Related]
57. Kinetics and stoichiometry of aerobic sulfide oxidation in wastewater from sewers-effects of pH and temperature. Nielsen AH; Vollertsen J; Hvitved-Jacobsen T Water Environ Res; 2006 Mar; 78(3):275-83. PubMed ID: 16629268 [TBL] [Abstract][Full Text] [Related]
58. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems. Gutierrez O; Sudarjanto G; Ren G; Ganigué R; Jiang G; Yuan Z Water Res; 2014 Jan; 48():569-78. PubMed ID: 24210545 [TBL] [Abstract][Full Text] [Related]
59. Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control. Pikaar I; Flugen M; Lin HW; Salehin S; Li J; Donose BC; Dennis PG; Bethke L; Johnson I; Rabaey K; Yuan Z Water Res; 2019 Dec; 167():115032. PubMed ID: 31546029 [TBL] [Abstract][Full Text] [Related]
60. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers. Zuo Z; Ren D; Qiao L; Li H; Huang X; Liu Y Water Res; 2021 Sep; 203():117494. PubMed ID: 34412021 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]