These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36375960)

  • 1. New microbial electrosynthesis system for methane production from carbon dioxide coupled with oxidation of sulfide to sulfate.
    Kambara H; Dinh HTT; Matsushita S; Aoi Y; Kindaichi T; Ozaki N; Ohashi A
    J Environ Sci (China); 2023 Mar; 125():786-797. PubMed ID: 36375960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological methane production coupled with sulfur oxidation in a microbial electrosynthesis system without organic substrates.
    Dinh HTT; Kambara H; Matsushita S; Aoi Y; Kindaichi T; Ozaki N; Ohashi A
    J Environ Sci (China); 2022 Jun; 116():68-78. PubMed ID: 35219426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioelectrical Methane Production with an Ammonium Oxidative Reaction under the No Organic Substance Condition.
    Dinh HTT; Kambara H; Harada Y; Matsushita S; Aoi Y; Kindaichi T; Ozaki N; Ohashi A
    Microbes Environ; 2021; 36(2):. PubMed ID: 34135211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfide-driven microbial electrosynthesis.
    Gong Y; Ebrahim A; Feist AM; Embree M; Zhang T; Lovley D; Zengler K
    Environ Sci Technol; 2013 Jan; 47(1):568-73. PubMed ID: 23252645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of sulfide and production of methane from carbon dioxide in microbial fuel cells-microbial electrolysis cell (MFCs-MEC) coupled system.
    Jiang Y; Su M; Li D
    Appl Biochem Biotechnol; 2014 Mar; 172(5):2720-31. PubMed ID: 24425301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxiliary voltage enhanced microbial methane oxidation co-driven by nitrite and sulfate reduction.
    Chai F; Li L; Xue S; Liu J
    Chemosphere; 2020 Jul; 250():126259. PubMed ID: 32092575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of bioelectrochemical CO
    Yang HY; Bao BL; Liu J; Qin Y; Wang YR; Su KZ; Han JC; Mu Y
    Bioelectrochemistry; 2018 Feb; 119():180-188. PubMed ID: 29054074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-rate microbial electrosynthesis using a zero-gap flow cell and vapor-fed anode design.
    Baek G; Rossi R; Saikaly PE; Logan BE
    Water Res; 2022 Jul; 219():118597. PubMed ID: 35609490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a non-precious metal catalyst for long-term enhancement of methane production in a zero-gap microbial electrosynthesis cell.
    Bian B; Yu N; Akbari A; Shi L; Zhou X; Xie C; Saikaly PE; Logan BE
    Water Res; 2024 Aug; 259():121815. PubMed ID: 38820732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of specific microbial communities by optimum applied voltages for enhanced methane production by microbial electrosynthesis in anaerobic digestion.
    Flores-Rodriguez C; Min B
    Bioresour Technol; 2020 Mar; 300():122624. PubMed ID: 31918296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen sulfide affects the performance of a methanogenic bioelectrochemical system used for biogas upgrading.
    Dykstra CM; Pavlostathis SG
    Water Res; 2021 Jul; 200():117268. PubMed ID: 34098269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane.
    Xiang Y; Liu G; Zhang R; Lu Y; Luo H
    Bioresour Technol; 2017 Jun; 233():227-235. PubMed ID: 28282609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term operation of microbial electrosynthesis cell reducing CO
    Bajracharya S; Yuliasni R; Vanbroekhoven K; Buisman CJ; Strik DP; Pant D
    Bioelectrochemistry; 2017 Feb; 113():26-34. PubMed ID: 27631151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The potential of electrotrophic denitrification coupled with sulfur recycle in MFC and its responses to COD/SO
    Ai T; Zou L; Cheng H; Luo Z; Al-Rekabi WS; Li H; Fu Q; He Q; Ai H
    Chemosphere; 2022 Jan; 287(Pt 2):132149. PubMed ID: 34496337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zero-valent sulphur is a key intermediate in marine methane oxidation.
    Milucka J; Ferdelman TG; Polerecky L; Franzke D; Wegener G; Schmid M; Lieberwirth I; Wagner M; Widdel F; Kuypers MM
    Nature; 2012 Nov; 491(7425):541-6. PubMed ID: 23135396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing a methane-fueled, sediment-free mixed microbial community for utilization of distributed sources of natural gas.
    Marlow JJ; Kumar A; Enalls BC; Reynard LM; Tuross N; Stephanopoulos G; Girguis P
    Biotechnol Bioeng; 2018 Jun; 115(6):1450-1464. PubMed ID: 29460958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon and sulfur back flux during anaerobic microbial oxidation of methane and coupled sulfate reduction.
    Holler T; Wegener G; Niemann H; Deusner C; Ferdelman TG; Boetius A; Brunner B; Widdel F
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):E1484-90. PubMed ID: 22160711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of biocathode materials for microbial electrosynthesis of methane and acetate.
    Gomez Vidales A; Omanovic S; Li H; Hrapovic S; Tartakovsky B
    Bioelectrochemistry; 2022 Dec; 148():108246. PubMed ID: 36087521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction.
    Mohanakrishna G; Seelam JS; Vanbroekhoven K; Pant D
    Faraday Discuss; 2015; 183():445-62. PubMed ID: 26399888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis.
    Das S; Chatterjee P; Ghangrekar MM
    Water Sci Technol; 2018 Mar; 77(5-6):1293-1302. PubMed ID: 29528317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.