BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36376376)

  • 1. Graph neural network for integrated water network partitioning and dynamic district metered areas.
    Fu M; Rong K; Huang Y; Zhang M; Zheng L; Zheng J; Falah MW; Yaseen ZM
    Sci Rep; 2022 Nov; 12(1):19466. PubMed ID: 36376376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water leakage management by district metered areas at water distribution networks.
    Özdemir Ö
    Environ Monit Assess; 2018 Mar; 190(4):182. PubMed ID: 29497875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decision support system to divide a large network into suitable District Metered Areas.
    Gomes R; Marques AS; Sousa J
    Water Sci Technol; 2012; 65(9):1667-75. PubMed ID: 22508131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graph Laplace Regularization-based pressure sensor placement strategy for leak localization in the water distribution networks under joint hydraulic and topological feature spaces.
    Cheng M; Li J; Wang C; Ye C; Chang Z
    Water Res; 2024 Jun; 257():121666. PubMed ID: 38703543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal sensor placement for leak location in water distribution networks: A feature selection method combined with graph signal processing.
    Cheng M; Li J
    Water Res; 2023 Aug; 242():120313. PubMed ID: 37451191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time water quality prediction in water distribution networks using graph neural networks with sparse monitoring data.
    Li Z; Liu H; Zhang C; Fu G
    Water Res; 2024 Feb; 250():121018. PubMed ID: 38113592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient supply management in water flow network using graph spectral techniques.
    Gopalsamy T; Thankappan V; Chandramohan S
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):2530-2543. PubMed ID: 35932342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighted spectral clustering for water distribution network partitioning.
    Di Nardo A; Di Natale M; Giudicianni C; Greco R; Santonastaso GF
    Appl Netw Sci; 2017; 2(1):19. PubMed ID: 30443574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gated graph neural networks for identifying contamination sources in water distribution systems.
    Li Z; Liu H; Zhang C; Fu G
    J Environ Manage; 2024 Feb; 351():119806. PubMed ID: 38118345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydraulic performance benchmarking for effective management of water distribution networks: An innovative composite index-based approach.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Ghosal PS
    J Environ Manage; 2021 Dec; 299():113603. PubMed ID: 34454199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of graph and complex network theory in water distribution networks: Mathematical foundation, application and prospects.
    Yu X; Wu Y; Meng F; Zhou X; Liu S; Huang Y; Wu X
    Water Res; 2024 Apr; 253():121238. PubMed ID: 38350191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Failure monitoring in water distribution networks.
    Misiunas D; Vítkovský J; Olsson G; Lambert M; Simpson A
    Water Sci Technol; 2006; 53(4-5):503-11. PubMed ID: 16722103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A convenient and stable graph-based pressure estimation methodology for water distribution networks: Development and field validation.
    Zhou X; Zhang J; Guo S; Liu S; Xin K
    Water Res; 2023 Apr; 233():119747. PubMed ID: 36841165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topological attributes of network resilience: A study in water distribution systems.
    Meng F; Fu G; Farmani R; Sweetapple C; Butler D
    Water Res; 2018 Oct; 143():376-386. PubMed ID: 29986247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging hydraulics and graph signal processing: A new perspective to estimate water distribution network pressures.
    Zhou X; Liu S; Xu W; Xin K; Wu Y; Meng F
    Water Res; 2022 Jun; 217():118416. PubMed ID: 35429881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fuzzy Control of Pressure in a Water Supply Network Based on Neural Network System Modeling and IoT Measurements.
    Santos de Araújo JV; Villanueva JMM; Cordula MM; Cardoso AA; Gomes HP
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leak detection in real water distribution networks based on acoustic emission and machine learning.
    Fares A; Tijani IA; Rui Z; Zayed T
    Environ Technol; 2023 Nov; 44(25):3850-3866. PubMed ID: 35506881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pressure management in water distribution systems through PRVs optimal placement and settings.
    Price E; Abhijith GR; Ostfeld A
    Water Res; 2022 Nov; 226():119236. PubMed ID: 36244147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shall we always use hydraulic models? A graph neural network metamodel for water system calibration and uncertainty assessment.
    Zanfei A; Menapace A; Brentan BM; Sitzenfrei R; Herrera M
    Water Res; 2023 Aug; 242():120264. PubMed ID: 37393807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust sensor placement for sustainable leakage management in water distribution networks of developing economies: A hybrid decision support framework.
    Zaman D; Gupta AK; Uddameri V; Tiwari MK; Sen D
    J Environ Manage; 2022 Oct; 320():115816. PubMed ID: 35932744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.