BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36376376)

  • 21. Performance and reliability analysis of water distribution systems under cascading failures and the identification of crucial pipes.
    Shuang Q; Zhang M; Yuan Y
    PLoS One; 2014; 9(2):e88445. PubMed ID: 24551102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using Complex Network Analysis for Optimization of Water Distribution Networks.
    Sitzenfrei R; Wang Q; Kapelan Z; Savić D
    Water Resour Res; 2020 Aug; 56(8):e2020WR027929. PubMed ID: 32999510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal Pressure Sensor Deployment for Leak Identification in Water Distribution Networks.
    Yang G; Wang H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydraulically informed graph theoretic measure of link criticality for the resilience analysis of water distribution networks.
    Ulusoy AJ; Stoianov I; Chazerain A
    Appl Netw Sci; 2018; 3(1):31. PubMed ID: 30839751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving the leak detection efficiency in water distribution networks using noise loggers.
    Tijani IA; Abdelmageed S; Fares A; Fan KH; Hu ZY; Zayed T
    Sci Total Environ; 2022 May; 821():153530. PubMed ID: 35104524
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Morphogenesis of Urban Water Distribution Networks: A Spatiotemporal Planning Approach for Cost-Efficient and Reliable Supply.
    Zischg J; Rauch W; Sitzenfrei R
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-time contamination zoning in water distribution networks for contamination emergencies: a case study.
    Bazargan-Lari MR; Taghipour S; Habibi M
    Environ Monit Assess; 2021 May; 193(6):336. PubMed ID: 33973066
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Contamination source identification in water distribution networks using convolutional neural network.
    Sun L; Yan H; Xin K; Tao T
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36786-36797. PubMed ID: 31745764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modular interdependency analysis for water distribution systems.
    Diao K; Jung D; Farmani R; Fu G; Butler D; Lansey K
    Water Res; 2021 Aug; 201():117320. PubMed ID: 34139513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A practical multi-objective optimization sectorization method for water distribution network.
    Zhang K; Yan H; Zeng H; Xin K; Tao T
    Sci Total Environ; 2019 Mar; 656():1401-1412. PubMed ID: 30625668
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of topological, empirical and optimization-based approaches for locating quality detection points in water distribution networks.
    Santonastaso GF; Di Nardo A; Creaco E; Musmarra D; Greco R
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):33844-33853. PubMed ID: 32851529
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient k-means clustering and greedy selection-based reduction of nodal search space for optimization of sensor placement in the water distribution networks.
    Gautam DK; Kotecha P; Subbiah S
    Water Res; 2022 Jul; 220():118666. PubMed ID: 35709596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A framework for real-time disinfection plan assembling for a contamination event in water distribution systems.
    Qiu M; Salomons E; Ostfeld A
    Water Res; 2020 May; 174():115625. PubMed ID: 32114016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bi-objective design-for-control for improving the pressure management and resilience of water distribution networks.
    Ulusoy AJ; Mahmoud HA; Pecci F; Keedwell EC; Stoianov I
    Water Res; 2022 Aug; 222():118914. PubMed ID: 35933815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic analysis of non-revenue water in district metered areas under varying water consumption conditions owing to COVID-19.
    Pathirane A; Kazama S; Takizawa S
    Heliyon; 2024 Jan; 10(1):e23516. PubMed ID: 38169892
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancing reclaimed water distribution network resilience with cost-effective meshing.
    Martínez D; Bergillos S; Corominas L; Comas J; Wang F; Kooij R; Calle E
    Sci Total Environ; 2024 Aug; 938():173051. PubMed ID: 38740194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Many-objective optimization model for the flexible design of water distribution networks.
    Marques J; Cunha M; Savić D
    J Environ Manage; 2018 Nov; 226():308-319. PubMed ID: 30125810
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic simulation for comprehensive water resources policies to improve water-use efficiency in coastal city.
    An Z; Yan J; Sha J; Ma Y; Mou S
    Environ Sci Pollut Res Int; 2021 May; 28(20):25628-25649. PubMed ID: 33469790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling complexity in engineered infrastructure system: Water distribution network as an example.
    Zeng F; Li X; Li K
    Chaos; 2017 Feb; 27(2):023105. PubMed ID: 28249393
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust Data-Driven Leak Localization in Water Distribution Networks Using Pressure Measurements and Topological Information.
    Alves D; Blesa J; Duviella E; Rajaoarisoa L
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.