These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 36376406)

  • 1. Shaping bacterial gene expression by physiological and proteome allocation constraints.
    Scott M; Hwa T
    Nat Rev Microbiol; 2023 May; 21(5):327-342. PubMed ID: 36376406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization.
    Brückner R; Titgemeyer F
    FEMS Microbiol Lett; 2002 Apr; 209(2):141-8. PubMed ID: 12007797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-regulation between proteome reallocation and metabolic flux redistribution governs bacterial growth transition kinetics.
    Yuan H; Bai Y; Li X; Fu X
    Metab Eng; 2024 Mar; 82():60-68. PubMed ID: 38309620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial growth: global effects on gene expression, growth feedback and proteome partition.
    Klumpp S; Hwa T
    Curr Opin Biotechnol; 2014 Aug; 28():96-102. PubMed ID: 24495512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of gene expression in flux balance models of metabolism.
    Covert MW; Schilling CH; Palsson B
    J Theor Biol; 2001 Nov; 213(1):73-88. PubMed ID: 11708855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of robust growth laws from optimal regulation of ribosome synthesis.
    Scott M; Klumpp S; Mateescu EM; Hwa T
    Mol Syst Biol; 2014 Aug; 10(8):747. PubMed ID: 25149558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients.
    Görke B; Stülke J
    Nat Rev Microbiol; 2008 Aug; 6(8):613-24. PubMed ID: 18628769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanisms of carbon catabolite repression in bacteria.
    Deutscher J
    Curr Opin Microbiol; 2008 Apr; 11(2):87-93. PubMed ID: 18359269
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria.
    Hui S; Silverman JM; Chen SS; Erickson DW; Basan M; Wang J; Hwa T; Williamson JR
    Mol Syst Biol; 2015 Feb; 11(1):784. PubMed ID: 25678603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Carbon catabolite repression or how bacteria choose their favorite sugars].
    Galinier A
    Med Sci (Paris); 2018; 34(6-7):531-539. PubMed ID: 30067204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the physiological blueprint of a bacterial cell: revelations of unanticipated complexity in transcriptome and proteome.
    Toledo-Arana A; Solano C
    Bioessays; 2010 Jun; 32(6):461-7. PubMed ID: 20486131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cra and the control of carbon flux via metabolic pathways.
    Ramseier TM
    Res Microbiol; 1996; 147(6-7):489-93. PubMed ID: 9084760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptomic analysis of a classical model of carbon catabolite regulation in Streptomyces coelicolor.
    Romero-Rodríguez A; Rocha D; Ruiz-Villafan B; Tierrafría V; Rodríguez-Sanoja R; Segura-González D; Sánchez S
    BMC Microbiol; 2016 Apr; 16():77. PubMed ID: 27121083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small regulatory non-coding RNAs in bacteria: physiology and mechanistic aspects.
    Repoila F; Darfeuille F
    Biol Cell; 2009 Feb; 101(2):117-31. PubMed ID: 19076068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A global resource allocation strategy governs growth transition kinetics of Escherichia coli.
    Erickson DW; Schink SJ; Patsalo V; Williamson JR; Gerland U; Hwa T
    Nature; 2017 Nov; 551(7678):119-123. PubMed ID: 29072300
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the multi-scale mechanisms of macromolecular resource allocation.
    Yang L; Yurkovich JT; King ZA; Palsson BO
    Curr Opin Microbiol; 2018 Oct; 45():8-15. PubMed ID: 29367175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles model of optimal translation factors stoichiometry.
    Lalanne JB; Li GW
    Elife; 2021 Sep; 10():. PubMed ID: 34590582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The impact of carbon and nitrogen catabolite repression in microorganisms.
    Nair A; Sarma SJ
    Microbiol Res; 2021 Oct; 251():126831. PubMed ID: 34325194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacillus subtilis functional genomics: global characterization of the stringent response by proteome and transcriptome analysis.
    Eymann C; Homuth G; Scharf C; Hecker M
    J Bacteriol; 2002 May; 184(9):2500-20. PubMed ID: 11948165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of bacterial metabolism by small RNAs using diverse mechanisms.
    Bobrovskyy M; Vanderpool CK
    Annu Rev Genet; 2013; 47():209-32. PubMed ID: 24016191
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.