These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36376588)
1. Desynchronizing the sleep---wake cycle from circadian timing to assess their separate contributions to physiology and behaviour and to estimate intrinsic circadian period. Wang W; Yuan RK; Mitchell JF; Zitting KM; St Hilaire MA; Wyatt JK; Scheer FAJL; Wright KP; Brown EN; Ronda JM; Klerman EB; Duffy JF; Dijk DJ; Czeisler CA Nat Protoc; 2023 Feb; 18(2):579-603. PubMed ID: 36376588 [TBL] [Abstract][Full Text] [Related]
2. Linear demasking techniques are unreliable for estimating the circadian phase of ambulatory temperature data. Klerman EB; Lee Y; Czeisler CA; Kronauer RE J Biol Rhythms; 1999 Aug; 14(4):260-74. PubMed ID: 10447306 [TBL] [Abstract][Full Text] [Related]
3. Revisiting spontaneous internal desynchrony using a quantitative model of sleep physiology. Phillips AJ; Czeisler CA; Klerman EB J Biol Rhythms; 2011 Oct; 26(5):441-53. PubMed ID: 21921298 [TBL] [Abstract][Full Text] [Related]
4. The effects of a split sleep-wake schedule on neurobehavioural performance and predictions of performance under conditions of forced desynchrony. Kosmadopoulos A; Sargent C; Darwent D; Zhou X; Dawson D; Roach GD Chronobiol Int; 2014 Dec; 31(10):1209-17. PubMed ID: 25222348 [TBL] [Abstract][Full Text] [Related]
5. The influence of circadian phase and prior wake on neuromuscular function. Sargent C; Ferguson SA; Darwent D; Kennaway DJ; Roach GD Chronobiol Int; 2010 Jul; 27(5):911-21. PubMed ID: 20636205 [TBL] [Abstract][Full Text] [Related]
6. Sleep restriction masks the influence of the circadian process on sleep propensity. Sargent C; Darwent D; Ferguson SA; Kennaway DJ; Roach GD Chronobiol Int; 2012 Jun; 29(5):565-71. PubMed ID: 22621352 [TBL] [Abstract][Full Text] [Related]
7. Integration of human sleep-wake regulation and circadian rhythmicity. Dijk DJ; Lockley SW J Appl Physiol (1985); 2002 Feb; 92(2):852-62. PubMed ID: 11796701 [TBL] [Abstract][Full Text] [Related]
8. Contribution of core body temperature, prior wake time, and sleep stages to cognitive throughput performance during forced desynchrony. Darwent D; Ferguson SA; Sargent C; Paech GM; Williams L; Zhou X; Matthews RW; Dawson D; Kennaway DJ; Roach GD Chronobiol Int; 2010 Jul; 27(5):898-910. PubMed ID: 20636204 [TBL] [Abstract][Full Text] [Related]
9. Forced desynchrony of circadian rhythms of body temperature and activity in rats. Strijkstra AM; Meerlo P; Beersma DG Chronobiol Int; 1999 Jul; 16(4):431-40. PubMed ID: 10442237 [TBL] [Abstract][Full Text] [Related]
10. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Dijk DJ; Duffy JF; Czeisler CA Chronobiol Int; 2000 May; 17(3):285-311. PubMed ID: 10841208 [TBL] [Abstract][Full Text] [Related]
11. Circadian sleep regulation in the absence of light perception: chronic non-24-hour circadian rhythm sleep disorder in a blind man with a regular 24-hour sleep-wake schedule. Klein T; Martens H; Dijk DJ; Kronauer RE; Seely EW; Czeisler CA Sleep; 1993 Jun; 16(4):333-43. PubMed ID: 8341894 [TBL] [Abstract][Full Text] [Related]
12. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive performance. Dijk DJ; Duffy JF; Czeisler CA J Sleep Res; 1992 Jun; 1(2):112-7. PubMed ID: 10607036 [TBL] [Abstract][Full Text] [Related]
13. Plasticity of the intrinsic period of the human circadian timing system. Scheer FA; Wright KP; Kronauer RE; Czeisler CA PLoS One; 2007 Aug; 2(8):e721. PubMed ID: 17684566 [TBL] [Abstract][Full Text] [Related]
14. A parallelism between human body temperature and performance independent of the endogenous circadian pacemaker. Monk TH; Carrier J J Biol Rhythms; 1998 Apr; 13(2):113-22. PubMed ID: 9554573 [TBL] [Abstract][Full Text] [Related]
15. Bright Light Increases Alertness and Not Cortisol in Healthy Men: A Forced Desynchrony Study Under Dim and Bright Light (I). Lok R; Woelders T; van Koningsveld MJ; Oberman K; Fuhler SG; Beersma DGM; Hut RA J Biol Rhythms; 2022 Aug; 37(4):403-416. PubMed ID: 35686534 [TBL] [Abstract][Full Text] [Related]
16. Dynamics of neurobehavioral performance variability under forced desynchrony: evidence of state instability. Zhou X; Ferguson SA; Matthews RW; Sargent C; Darwent D; Kennaway DJ; Roach GD Sleep; 2011 Jan; 34(1):57-63. PubMed ID: 21203373 [TBL] [Abstract][Full Text] [Related]
17. The sleep-wake distribution contributes to the peripheral rhythms in PERIOD-2. Hoekstra MM; Jan M; Katsioudi G; Emmenegger Y; Franken P Elife; 2021 Dec; 10():. PubMed ID: 34895464 [TBL] [Abstract][Full Text] [Related]
18. A Model-Based Approach to Optimizing Ultradian Forced Desynchrony Protocols for Human Circadian Research. Stack N; Barker D; Carskadon M; Diniz Behn C J Biol Rhythms; 2017 Oct; 32(5):485-498. PubMed ID: 28954576 [TBL] [Abstract][Full Text] [Related]
19. A phase dynamics model of human circadian rhythms. Nakao M; Yamamoto K; Honma K; Hashimoto S; Honma S; Katayama N; Yamamoto M J Biol Rhythms; 2002 Oct; 17(5):476-89. PubMed ID: 12375623 [TBL] [Abstract][Full Text] [Related]
20. Mathematical Analysis of Light-sensitivity Related Challenges in Assessment of the Intrinsic Period of the Human Circadian Pacemaker. Usmani IM; Dijk DJ; Skeldon AC J Biol Rhythms; 2024 Apr; 39(2):166-182. PubMed ID: 38317600 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]