BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 36376811)

  • 1. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling.
    Lu X; Ma L; Zhang C; Yan H; Bao J; Gong M; Wang W; Li S; Ma S; Chen B
    BMC Plant Biol; 2022 Nov; 22(1):528. PubMed ID: 36376811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome Sequence Analysis Elaborates a Complex Defensive Mechanism of Grapevine (
    Guan L; Haider MS; Khan N; Nasim M; Jiu S; Fiaz M; Zhu X; Zhang K; Fang J
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological and comparative transcriptome analysis of leaf response and physiological adaption to saline alkali stress across pH values in alfalfa (Medicago sativa).
    Wang Y; Wang J; Guo D; Zhang H; Che Y; Li Y; Tian B; Wang Z; Sun G; Zhang H
    Plant Physiol Biochem; 2021 Oct; 167():140-152. PubMed ID: 34352517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt stress induces endoplasmic reticulum stress-responsive genes in a grapevine rootstock.
    Çakır Aydemir B; Yüksel Özmen C; Kibar U; Mutaf F; Büyük PB; Bakır M; Ergül A
    PLoS One; 2020; 15(7):e0236424. PubMed ID: 32730292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different responses of two Chinese cabbage (Brassica rapa L. ssp. pekinensis) cultivars in photosynthetic characteristics and chloroplast ultrastructure to salt and alkali stress.
    Li N; Zhang Z; Gao S; Lv Y; Chen Z; Cao B; Xu K
    Planta; 2021 Oct; 254(5):102. PubMed ID: 34671899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global transcriptome analysis of grapevine (Vitis vinifera L.) leaves under salt stress reveals differential response at early and late stages of stress in table grape cv. Thompson Seedless.
    Upadhyay A; Gaonkar T; Upadhyay AK; Jogaiah S; Shinde MP; Kadoo NY; Gupta VS
    Plant Physiol Biochem; 2018 Aug; 129():168-179. PubMed ID: 29885601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated CO
    Zhao X; Li WF; Wang Y; Ma ZH; Yang SJ; Zhou Q; Mao J; Chen BH
    BMC Plant Biol; 2019 Jan; 19(1):42. PubMed ID: 30696402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance.
    Das P; Majumder AL
    Funct Integr Genomics; 2019 Jan; 19(1):61-73. PubMed ID: 30046943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive mechanism of Hemerocallis citrina Baroni to complex saline-alkali stress revealed by photosynthetic characteristics and antioxidant regulation.
    Chen S; Zhou Q; Feng Y; Dong Y; Zhang Z; Wang Y; Liu W
    Plant Cell Rep; 2024 Jun; 43(7):176. PubMed ID: 38896259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and transcriptomic analysis of Cabernet Sauvginon (Vitis vinifera L.) reveals the alleviating effect of exogenous strigolactones on the response of grapevine to drought stress.
    Wang WN; Min Z; Wu JR; Liu BC; Xu XL; Fang YL; Ju YL
    Plant Physiol Biochem; 2021 Oct; 167():400-409. PubMed ID: 34411779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcriptome and Metabolome Analyses Revealed the Response Mechanism of Sugar Beet to Salt Stress of Different Durations.
    Cui J; Li J; Dai C; Li L
    Int J Mol Sci; 2022 Aug; 23(17):. PubMed ID: 36076993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of grapevine (Vitis vinifera L.) leaf changes induced by transition to autotrophy and exposure to high light irradiance.
    Nilo-Poyanco R; Olivares D; Orellana A; Hinrichsen P; Pinto M
    J Proteomics; 2013 Oct; 91():309-30. PubMed ID: 23933133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive transcriptome and metabolome profiling reveal metabolic mechanisms of Nitraria sibirica Pall. to salt stress.
    Li H; Tang X; Yang X; Zhang H
    Sci Rep; 2021 Jun; 11(1):12878. PubMed ID: 34145354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative analysis of the transcriptome and metabolome reveals Bacillus atrophaeus WZYH01-mediated salt stress mechanism in maize (Zea mays L.).
    Hou Y; Zeng W; Ao C; Huang J
    J Biotechnol; 2024 Mar; 383():39-54. PubMed ID: 38346451
    [TBL] [Abstract][Full Text] [Related]  

  • 15. De novo transcriptome analysis provides insights into the salt tolerance of Podocarpus macrophyllus under salinity stress.
    Zou L; Li T; Li B; He J; Liao C; Wang L; Xue S; Sun T; Ma X; Wu Q
    BMC Plant Biol; 2021 Oct; 21(1):489. PubMed ID: 34696735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and comparative transcriptome analysis of the response and adaptation mechanism of the photosynthetic function of mulberry (
    Su Q; Sun Z; Liu Y; Lei J; Zhu W; Nanyan L
    Plant Signal Behav; 2022 Dec; 17(1):2094619. PubMed ID: 35786355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive transcriptome profiling of Caragana microphylla in response to salt condition using de novo assembly.
    Kim S; Na J; Nie H; Kim J; Lee J; Kim S
    Biotechnol Lett; 2021 Jan; 43(1):317-327. PubMed ID: 33026585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced salt-induced antioxidative responses involve a contribution of polyamine biosynthesis in grapevine plants.
    Ikbal FE; Hernández JA; Barba-Espín G; Koussa T; Aziz A; Faize M; Diaz-Vivancos P
    J Plant Physiol; 2014 Jun; 171(10):779-88. PubMed ID: 24877669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation.
    Pontin MA; Piccoli PN; Francisco R; Bottini R; Martinez-Zapater JM; Lijavetzky D
    BMC Plant Biol; 2010 Oct; 10():224. PubMed ID: 20959019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effects of cerium oxide nanoparticles in grapevine (Vitis vinifera L.) cv. Flame Seedless under salt stress conditions.
    Gohari G; Zareei E; Rostami H; Panahirad S; Kulak M; Farhadi H; Amini M; Martinez-Ballesta MDC; Fotopoulos V
    Ecotoxicol Environ Saf; 2021 Sep; 220():112402. PubMed ID: 34090105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.