BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36376971)

  • 1. PHLPP isoforms differentially regulate Akt isoforms and AS160 affecting neuronal insulin signaling and insulin resistance via Scribble.
    Sharma M; Dey CS
    Cell Commun Signal; 2022 Nov; 20(1):179. PubMed ID: 36376971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Akt isoforms in neuronal insulin signaling and resistance.
    Sharma M; Dey CS
    Cell Mol Life Sci; 2021 Dec; 78(23):7873-7898. PubMed ID: 34724097
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PHLPP and a second isoform, PHLPP2, differentially attenuate the amplitude of Akt signaling by regulating distinct Akt isoforms.
    Brognard J; Sierecki E; Gao T; Newton AC
    Mol Cell; 2007 Mar; 25(6):917-31. PubMed ID: 17386267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PP1γ regulates neuronal insulin signaling and aggravates insulin resistance leading to AD-like phenotypes.
    Yadav Y; Sharma M; Dey CS
    Cell Commun Signal; 2023 Apr; 21(1):82. PubMed ID: 37085815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The phosphatase PHLPP1 regulates Akt2, promotes pancreatic cancer cell death, and inhibits tumor formation.
    Nitsche C; Edderkaoui M; Moore RM; Eibl G; Kasahara N; Treger J; Grippo PJ; Mayerle J; Lerch MM; Gukovskaya AS
    Gastroenterology; 2012 Feb; 142(2):377-87.e1-5. PubMed ID: 22044669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased levels of the Akt-specific phosphatase PH domain leucine-rich repeat protein phosphatase (PHLPP)-1 in obese participants are associated with insulin resistance.
    Andreozzi F; Procopio C; Greco A; Mannino GC; Miele C; Raciti GA; Iadicicco C; Beguinot F; Pontiroli AE; Hribal ML; Folli F; Sesti G
    Diabetologia; 2011 Jul; 54(7):1879-87. PubMed ID: 21461637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging roles of PHLPP phosphatases in the nervous system.
    Mallick A; Sharma M; Dey CS
    Mol Cell Neurosci; 2022 Dec; 123():103789. PubMed ID: 36343848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PHLPPing through history: a decade in the life of PHLPP phosphatases.
    Grzechnik AT; Newton AC
    Biochem Soc Trans; 2016 Dec; 44(6):1675-1682. PubMed ID: 27913677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the PHLPPside: Emerging roles of PHLPP phosphatases in the heart.
    Lemoine KA; Fassas JM; Ohannesian SH; Purcell NH
    Cell Signal; 2021 Oct; 86():110097. PubMed ID: 34320369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoreceptor Neuroprotection: Regulation of Akt Activation Through Serine/Threonine Phosphatases, PHLPP and PHLPPL.
    Rajala RV; Kanan Y; Anderson RE
    Adv Exp Med Biol; 2016; 854():419-24. PubMed ID: 26427440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PHLPP-mediated dephosphorylation of S6K1 inhibits protein translation and cell growth.
    Liu J; Stevens PD; Li X; Schmidt MD; Gao T
    Mol Cell Biol; 2011 Dec; 31(24):4917-27. PubMed ID: 21986499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PHLPP is a negative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice.
    Li X; Stevens PD; Liu J; Yang H; Wang W; Wang C; Zeng Z; Schmidt MD; Yang M; Lee EY; Gao T
    Gastroenterology; 2014 May; 146(5):1301-12.e1-10. PubMed ID: 24530606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AKT ISOFORMS-AS160-GLUT4: The defining axis of insulin resistance.
    Sharma M; Dey CS
    Rev Endocr Metab Disord; 2021 Dec; 22(4):973-986. PubMed ID: 33928491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isoform-specific defects of insulin stimulation of Akt/protein kinase B (PKB) in skeletal muscle cells from type 2 diabetic patients.
    Cozzone D; Fröjdö S; Disse E; Debard C; Laville M; Pirola L; Vidal H
    Diabetologia; 2008 Mar; 51(3):512-21. PubMed ID: 18204829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PHLPPs: Emerging players in metabolic disorders.
    Balamurugan K; Chandra K; Sai Latha S; Swathi M; Joshi MB; Misra P; Parsa KVL
    Drug Discov Today; 2022 Oct; 27(10):103317. PubMed ID: 35835313
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Loss of PHLPP expression in colon cancer: role in proliferation and tumorigenesis.
    Liu J; Weiss HL; Rychahou P; Jackson LN; Evers BM; Gao T
    Oncogene; 2009 Feb; 28(7):994-1004. PubMed ID: 19079341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serine/threonine kinase akt activation regulates the activity of retinal serine/threonine phosphatases, PHLPP and PHLPPL.
    Kanan Y; Matsumoto H; Song H; Sokolov M; Anderson RE; Rajala RV
    J Neurochem; 2010 Apr; 113(2):477-88. PubMed ID: 20089132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pharmacological inhibition of pleckstrin homology domain leucine-rich repeat protein phosphatase is neuroprotective: differential effects on astrocytes.
    Jackson TC; Verrier JD; Drabek T; Janesko-Feldman K; Gillespie DG; Uray T; Dezfulian C; Clark RS; Bayir H; Jackson EK; Kochanek PM
    J Pharmacol Exp Ther; 2013 Nov; 347(2):516-28. PubMed ID: 24023368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depletion of Pleckstrin homology domain leucine-rich repeat protein phosphatases 1 and 2 by Bcr-Abl promotes chronic myelogenous leukemia cell proliferation through continuous phosphorylation of Akt isoforms.
    Hirano I; Nakamura S; Yokota D; Ono T; Shigeno K; Fujisawa S; Shinjo K; Ohnishi K
    J Biol Chem; 2009 Aug; 284(33):22155-22165. PubMed ID: 19261608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The phosphatase PHLPP controls the cellular levels of protein kinase C.
    Gao T; Brognard J; Newton AC
    J Biol Chem; 2008 Mar; 283(10):6300-11. PubMed ID: 18162466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.