These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36376998)

  • 1. Non-linear loss of suitable wine regions over Europe in response to increasing global warming.
    Sgubin G; Swingedouw D; Mignot J; Gambetta GA; Bois B; Loukos H; Noël T; Pieri P; García de Cortázar-Atauri I; Ollat N; van Leeuwen C
    Glob Chang Biol; 2023 Feb; 29(3):808-826. PubMed ID: 36376998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions.
    Barnuud NN; Zerihun A; Mpelasoka F; Gibberd M; Bates B
    Int J Biometeorol; 2014 Aug; 58(6):1279-93. PubMed ID: 24026877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties.
    Fraga H; Malheiro AC; Moutinho-Pereira J; Santos JA
    Int J Biometeorol; 2013 Nov; 57(6):909-25. PubMed ID: 23306774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relocation of bioclimatic suitability of Portuguese grapevine varieties under climate change scenarios.
    Adão F; Campos JC; Santos JA; Malheiro AC; Fraga H
    Front Plant Sci; 2023; 14():974020. PubMed ID: 36844079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.
    Cabré MF; Quénol H; Nuñez M
    Int J Biometeorol; 2016 Sep; 60(9):1325-40. PubMed ID: 26823161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extreme heat reduces and shifts United States premium wine production in the 21st century.
    White MA; Diffenbaugh NS; Jones GV; Pal JS; Giorgi F
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11217-22. PubMed ID: 16840557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth performance and carbon partitioning of grapevine Tempranillo clones under simulated climate change scenarios: Elevated CO
    Arrizabalaga-Arriazu M; Morales F; Irigoyen JJ; Hilbert G; Pascual I
    J Plant Physiol; 2020 Sep; 252():153226. PubMed ID: 32763650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grapevine Responses to Heat Stress and Global Warming.
    Venios X; Korkas E; Nisiotou A; Banilas G
    Plants (Basel); 2020 Dec; 9(12):. PubMed ID: 33322341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global warming significantly increases the risk of Pierce's disease epidemics in European vineyards.
    Giménez-Romero À; Iturbide M; Moralejo E; Gutiérrez JM; Matías MA
    Sci Rep; 2024 Apr; 14(1):9648. PubMed ID: 38671045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threats of global warming to the world's freshwater fishes.
    Barbarossa V; Bosmans J; Wanders N; King H; Bierkens MFP; Huijbregts MAJ; Schipper AM
    Nat Commun; 2021 Mar; 12(1):1701. PubMed ID: 33723261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming.
    Huber V; Krummenauer L; Peña-Ortiz C; Lange S; Gasparrini A; Vicedo-Cabrera AM; Garcia-Herrera R; Frieler K
    Environ Res; 2020 Jul; 186():109447. PubMed ID: 32302868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Climate Warming on Grapevine (
    Bernáth S; Paulen O; Šiška B; Kusá Z; Tóth F
    Plants (Basel); 2021 May; 10(5):. PubMed ID: 34065184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates.
    Hall A; Mathews AJ; Holzapfel BP
    Int J Biometeorol; 2016 Sep; 60(9):1405-22. PubMed ID: 26826103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When could global warming reach 4°C?
    Betts RA; Collins M; Hemming DL; Jones CD; Lowe JA; Sanderson MG
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1934):67-84. PubMed ID: 21115513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe.
    Fraga H; García de Cortázar Atauri I; Malheiro AC; Santos JA
    Glob Chang Biol; 2016 Nov; 22(11):3774-3788. PubMed ID: 27254813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming-Review.
    Drappier J; Thibon C; Rabot A; Geny-Denis L
    Crit Rev Food Sci Nutr; 2019; 59(1):14-30. PubMed ID: 29064726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change, wine, and conservation.
    Hannah L; Roehrdanz PR; Ikegami M; Shepard AV; Shaw MR; Tabor G; Zhi L; Marquet PA; Hijmans RJ
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6907-12. PubMed ID: 23569231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States.
    Karmalkar AV; Bradley RS
    PLoS One; 2017; 12(1):e0168697. PubMed ID: 28076360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the potential impact of 1.5, 2 and 3 °C global warming levels on crop suitability and planting season over West Africa.
    Egbebiyi TS; Crespo O; Lennard C; Zaroug M; Nikulin G; Harris I; Price J; Forstenhäusler N; Warren R
    PeerJ; 2020; 8():e8851. PubMed ID: 32411508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future productivity and phenology changes in European grasslands for different warming levels: implications for grassland management and carbon balance.
    Chang J; Ciais P; Viovy N; Soussana JF; Klumpp K; Sultan B
    Carbon Balance Manag; 2017 Dec; 12(1):11. PubMed ID: 28474332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.