These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 36377350)
1. Deciphering the Mechanics of Cancer Spheroid Growth in 3D Environments through Microfluidics Driven Mechanical Actuation. Aung A; Davey SK; Theprungsirikul J; Kumar V; Varghese S Adv Healthc Mater; 2023 Jun; 12(14):e2201842. PubMed ID: 36377350 [TBL] [Abstract][Full Text] [Related]
2. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
3. Mapping Tumor Spheroid Mechanics in Dependence of 3D Microenvironment Stiffness and Degradability by Brillouin Microscopy. Mahajan V; Beck T; Gregorczyk P; Ruland A; Alberti S; Guck J; Werner C; Schlüßler R; Taubenberger AV Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771711 [TBL] [Abstract][Full Text] [Related]
4. A Facile and Scalable Hydrogel Patterning Method for Microfluidic 3D Cell Culture and Spheroid-in-Gel Culture Array. Su C; Chuah YJ; Ong HB; Tay HM; Dalan R; Hou HW Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940266 [TBL] [Abstract][Full Text] [Related]
5. Tumor Spheroid Fabrication and Encapsulation in Polyethylene Glycol Hydrogels for Studying Spheroid-Matrix Interactions. Bruns J; Nejat S; Faber A; Zustiak SP J Vis Exp; 2023 Sep; (199):. PubMed ID: 37811942 [TBL] [Abstract][Full Text] [Related]
6. 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Hong S; Song JM Acta Biomater; 2022 Jan; 138():228-239. PubMed ID: 34718182 [TBL] [Abstract][Full Text] [Related]
7. 3D Microenvironment Stiffness Regulates Tumor Spheroid Growth and Mechanics via p21 and ROCK. Taubenberger AV; Girardo S; Träber N; Fischer-Friedrich E; Kräter M; Wagner K; Kurth T; Richter I; Haller B; Binner M; Hahn D; Freudenberg U; Werner C; Guck J Adv Biosyst; 2019 Sep; 3(9):e1900128. PubMed ID: 32648654 [TBL] [Abstract][Full Text] [Related]
8. Hydrogel matrix presence and composition influence drug responses of encapsulated glioblastoma spheroids. Hill L; Bruns J; Zustiak SP Acta Biomater; 2021 Sep; 132():437-447. PubMed ID: 34010694 [TBL] [Abstract][Full Text] [Related]
9. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion. Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553 [TBL] [Abstract][Full Text] [Related]
10. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval. Kim G; Jung Y; Cho K; Lee HJ; Koh WG Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725 [TBL] [Abstract][Full Text] [Related]
11. Impact of hydrogel biophysical properties on tumor spheroid growth and drug response. Cameron AP; Gao S; Liu Y; Zhao CX Biomater Adv; 2023 Jun; 149():213421. PubMed ID: 37060634 [TBL] [Abstract][Full Text] [Related]
12. Single-Step Biofabrication of In Situ Spheroid-Forming Compartmentalized Hydrogel for Clinical-Sized Cartilage Tissue Formation. van Loo B; Schot M; Gurian M; Kamperman T; Leijten J Adv Healthc Mater; 2024 Jan; 13(2):e2300095. PubMed ID: 37793116 [TBL] [Abstract][Full Text] [Related]
13. Generation of 3D Spheroids Using a Thiol-Acrylate Hydrogel Scaffold to Study Endocrine Response in ER Khan AH; Zhou SP; Moe M; Ortega Quesada BA; Bajgiran KR; Lassiter HR; Dorman JA; Martin EC; Pojman JA; Melvin AT ACS Biomater Sci Eng; 2022 Sep; 8(9):3977-3985. PubMed ID: 36001134 [TBL] [Abstract][Full Text] [Related]
14. Effects of mechanical properties of gelatin methacryloyl hydrogels on encapsulated stem cell spheroids for 3D tissue engineering. Kim EM; Lee GM; Lee S; Kim SJ; Lee D; Yoon DS; Joo J; Kong H; Park HH; Shin H Int J Biol Macromol; 2022 Jan; 194():903-913. PubMed ID: 34838857 [TBL] [Abstract][Full Text] [Related]
15. Uniform sized cancer spheroids production using hydrogel-based droplet microfluidics: a review. Kim S; Lam PY; Jayaraman A; Han A Biomed Microdevices; 2024 May; 26(2):26. PubMed ID: 38806765 [TBL] [Abstract][Full Text] [Related]
16. Integrative Abdelrahim AA; Hong S; Song JM Anal Chem; 2022 Oct; 94(40):13936-13943. PubMed ID: 36167500 [TBL] [Abstract][Full Text] [Related]
17. Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Alessandri K; Sarangi BR; Gurchenkov VV; Sinha B; Kießling TR; Fetler L; Rico F; Scheuring S; Lamaze C; Simon A; Geraldo S; Vignjevic D; Doméjean H; Rolland L; Funfak A; Bibette J; Bremond N; Nassoy P Proc Natl Acad Sci U S A; 2013 Sep; 110(37):14843-8. PubMed ID: 23980147 [TBL] [Abstract][Full Text] [Related]
18. Cell subtype-dependent formation of breast tumor spheroids and their variable responses to chemotherapeutics within microfluidics-generated 3D microgels with tunable mechanics. Lee D; Cha C Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110932. PubMed ID: 32409080 [TBL] [Abstract][Full Text] [Related]
19. Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy. Li Y; Khuu N; Prince E; Tao H; Zhang N; Chen Z; Gevorkian A; McGuigan AP; Kumacheva E Biomacromolecules; 2021 Feb; 22(2):419-429. PubMed ID: 33136364 [TBL] [Abstract][Full Text] [Related]