BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36377745)

  • 1. Additive Engineering of the CuSCN Hole Transport Layer for High-Performance Perovskite Semitransparent Solar Cells.
    Sun J; Zhang N; Wu J; Yang W; He H; Huang M; Zeng Y; Yang X; Ying Z; Qin G; Shou C; Sheng J; Ye J
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52223-52232. PubMed ID: 36377745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. All-Inorganic Hydrothermally Processed Semitransparent Sb
    Kumar P; Eriksson M; Kharytonau DS; You S; Natile MM; Vomiero A
    ACS Appl Energy Mater; 2024 Feb; 7(4):1421-1432. PubMed ID: 38425380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of Thermal Stability and Photoelectric Performance of Cs
    Liu Y; Li B; Xu J; Yao J
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells.
    Jung M; Kim YC; Jeon NJ; Yang WS; Seo J; Noh JH; Il Seok S
    ChemSusChem; 2016 Sep; 9(18):2592-2596. PubMed ID: 27611720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of Highly Efficient Perovskite Solar Cells by Applying Li-Doped CuSCN Hole Conductor and Interface Treatment.
    Yang IS; Park YJ; Hwang Y; Yang HC; Kim J; Lee WI
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gelation of Hole Transport Layer to Improve the Stability of Perovskite Solar Cells.
    Zhang Y; Zhou C; Lin L; Pei F; Xiao M; Yang X; Yuan G; Zhu C; Chen Y; Chen Q
    Nanomicro Lett; 2023 Jul; 15(1):175. PubMed ID: 37428245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN.
    Xi Q; Gao G; Zhou H; Zhao Y; Wu C; Wang L; Guo P; Xu J
    Nanoscale; 2017 May; 9(18):6136-6144. PubMed ID: 28447686
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determining Out-of-Plane Hole Mobility in CuSCN via the Time-of-Flight Technique To Elucidate Its Function in Perovskite Solar Cells.
    Mohan L; Ratnasingham SR; Panidi J; Daboczi M; Kim JS; Anthopoulos TD; Briscoe J; McLachlan MA; Kreouzis T
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38499-38507. PubMed ID: 34365787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and Stable Carbon-Based Perovskite Solar Cells Enabled by Mixed CuPc:CuSCN Hole Transporting Layer for Indoor Applications.
    Makming P; Homnan S; Ngamjarurojana A; Rimjaem S; Gardchareon A; Sagawa T; Haruta M; Pakawatpanurut P; Wongratanaphisan D; Kanjanaboos P; Intaniwet A; Ruankham P
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15486-15497. PubMed ID: 36939163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuum-Assisted Drying Process for Screen-Printable Carbon Electrodes of Perovskite Solar Cells with Enhanced Performance Based on Cuprous Thiocyanate as a Hole Transporting Layer.
    Wang J; Gong S; Chen Z; Yang S
    ACS Appl Mater Interfaces; 2021 May; 13(19):22684-22693. PubMed ID: 33947186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perovskite Solar Cells Employing a PbSO
    Zheng J; Li F; Chen C; Du Q; Jin M; Li H; Ji M; Shen Z
    ACS Appl Mater Interfaces; 2022 Jan; 14(2):2989-2999. PubMed ID: 34981934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells.
    Matebese F; Taziwa R; Mutukwa D
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30572658
    [No Abstract]   [Full Text] [Related]  

  • 13. Methylammonium Compensation Effects in MAPbI
    Kim G; Kwon N; Lee D; Kim M; Kim M; Lee Y; Kim W; Hyeon D; Kim B; Jeong MS; Hong J; Yang J
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5203-5210. PubMed ID: 35050584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perovskite/Hole Transport Layer Interface Improvement by Solvent Engineering of Spiro-OMeTAD Precursor Solution.
    Taherianfard H; Kim GW; Ebadi F; Abzieher T; Choi K; Paetzold UW; Richards BS; Alrhman Eliwi A; Tajabadi F; Taghavinia N; Malekshahi Byranvand M
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44802-44810. PubMed ID: 31670936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-step electrodeposition of CuSCN/CuI nanocomposite and its hole transport-ability in inverted planar perovskite solar cells.
    Ramachandran K; Jeganathan C; Subbian K
    Nanotechnology; 2021 May; 32(32):. PubMed ID: 33951622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strong electron acceptor additive based spiro-OMeTAD for high-performance and hysteresis-less planar perovskite solar cells.
    Wang S; Sun W; Zhang M; Yan H; Hua G; Li Z; He R; Zeng W; Lan Z; Wu J
    RSC Adv; 2020 Oct; 10(64):38736-38745. PubMed ID: 35518393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidization-Free Spiro-OMeTAD Hole-Transporting Layer for Efficient CsPbI
    Ma Z; Xiao Z; Liu Q; Huang D; Zhou W; Jiang H; Yang Z; Zhang M; Zhang W; Huang Y
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52779-52787. PubMed ID: 33170626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Engineering to Eliminate Hysteresis of Carbon-Based Planar Heterojunction Perovskite Solar Cells via CuSCN Incorporation.
    Yang Y; Pham ND; Yao D; Fan L; Hoang MT; Tiong VT; Wang Z; Zhu H; Wang H
    ACS Appl Mater Interfaces; 2019 Aug; 11(31):28431-28441. PubMed ID: 31311262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient and Stable CuSCN-based Perovskite Solar Cells Achieved by Interfacial Engineering with Amidinothiourea.
    Tang Z; Yao D; Li Y; Li C; Xia T; Tian N; Wang J; Zheng G; Mo S; Long F; Zhou B
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38657125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comprehensive Study of CsSnI
    Seyed-Talebi SM; Mahmoudi M; Lee CH
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.