These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 36377832)

  • 21. Encapsulation within a coordination cage modulates the reactivity of redox-active dyes.
    Yanshyna O; Białek MJ; Chashchikhin OV; Klajn R
    Commun Chem; 2022 Mar; 5(1):44. PubMed ID: 36697669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monolithic Spiropyran-Based Porous Polysilsesquioxanes with Stimulus-Responsive Properties.
    Euchler D; Ehgartner CR; Hüsing N; Feinle A
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47754-47762. PubMed ID: 33026803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanochemical Release of Non-Covalently Bound Guests from a Polymer-Decorated Supramolecular Cage.
    Küng R; Pausch T; Rasch D; Göstl R; Schmidt BM
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13626-13630. PubMed ID: 33729649
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controllable coordination-driven self-assembly: from discrete metallocages to infinite cage-based frameworks.
    Chen L; Chen Q; Wu M; Jiang F; Hong M
    Acc Chem Res; 2015 Feb; 48(2):201-10. PubMed ID: 25517043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulating the Optical Characteristics of Spiropyran@Metal-Organic Framework Composites as a Function of Spiropyran Substitution.
    Kremer S; Ober I; Greussing V; Kopacka H; Gallmetzer HG; Trübenbacher B; Demmel D; Olthof S; Huppertz H; Schwartz HA
    Langmuir; 2021 Jun; 37(25):7834-7842. PubMed ID: 34143632
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional Capsules via Subcomponent Self-Assembly.
    Zhang D; Ronson TK; Nitschke JR
    Acc Chem Res; 2018 Oct; 51(10):2423-2436. PubMed ID: 30207688
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modifying the internal substituents of self-assembled cages controls their molecular recognition and optical properties.
    Woods CZ; Wu HT; Ngai C; da Camara B; Julian RR; Hooley RJ
    Dalton Trans; 2022 Jul; 51(29):10920-10929. PubMed ID: 35796048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Cu
    Speakman NMA; Heard AW; Nitschke JR
    J Am Chem Soc; 2024 Apr; 146(15):10234-10239. PubMed ID: 38578086
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acidic open-cage solution containing basic cage-confined nanospaces for multipurpose catalysis.
    Li K; Wu K; Fan YZ; Guo J; Lu YL; Wang YF; Maurin G; Su CY
    Natl Sci Rev; 2022 May; 9(5):nwab155. PubMed ID: 35663244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modulating the Optical Properties of BODIPY Dyes by Noncovalent Dimerization within a Flexible Coordination Cage.
    Gemen J; Ahrens J; Shimon LJW; Klajn R
    J Am Chem Soc; 2020 Oct; 142(41):17721-17729. PubMed ID: 33006898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noncovalent Interactions with Proteins Modify the Physicochemical Properties of a Molecular Switch.
    Amdursky N; Kundu PK; Ahrens J; Huppert D; Klajn R
    Chempluschem; 2016 Jan; 81(1):44-48. PubMed ID: 31968727
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cavity-directed synthesis of labile silanol oligomers within self-assembled coordination cages.
    Yoshizawa M; Kusukawa T; Fujita M; Sakamoto S; Yamaguchi K
    J Am Chem Soc; 2001 Oct; 123(43):10454-9. PubMed ID: 11673975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient catalysis of the Kemp elimination in the cavity of a cubic coordination cage.
    Cullen W; Misuraca MC; Hunter CA; Williams NH; Ward MD
    Nat Chem; 2016 Mar; 8(3):231-6. PubMed ID: 26892554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cavity-directed synthesis within a self-assembled coordination cage: highly selective [2 + 2] cross-photodimerization of olefins.
    Yoshizawa M; Takeyama Y; Okano T; Fujita M
    J Am Chem Soc; 2003 Mar; 125(11):3243-7. PubMed ID: 12630879
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photophysics of Cage/Guest Assemblies: Photoinduced Electron Transfer between a Coordination Cage Containing Osmium(II) Luminophores, and Electron-Deficient Bound Guests in the Central Cavity.
    Train JS; Wragg AB; Auty AJ; Metherell AJ; Chekulaev D; Taylor CGP; Argent SP; Weinstein JA; Ward MD
    Inorg Chem; 2019 Feb; 58(4):2386-2396. PubMed ID: 30688057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Porous Shape-Persistent Organic Cage Compounds of Different Size, Geometry, and Function.
    Mastalerz M
    Acc Chem Res; 2018 Oct; 51(10):2411-2422. PubMed ID: 30203648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fac and mer isomers of Ru(II) tris(pyrazolyl-pyridine) complexes as models for the vertices of coordination cages: structural characterisation and hydrogen-bonding characteristics.
    Metherell AJ; Cullen W; Stephenson A; Hunter CA; Ward MD
    Dalton Trans; 2014 Jan; 43(1):71-84. PubMed ID: 24153436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlling the Recognition and Reactivity of Alkyl Ammonium Guests Using an Anion Coordination-Based Tetrahedral Cage.
    Zhang W; Yang D; Zhao J; Hou L; Sessler JL; Yang XJ; Wu B
    J Am Chem Soc; 2018 Apr; 140(15):5248-5256. PubMed ID: 29584424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hetero-Coencapsulation within a Supramolecular Cage: Moving away from the Statistical Distribution of Different Guests.
    Bravin C; Licini G; Hunter CA; Zonta C
    Chemistry; 2020 Aug; 26(43):9454-9458. PubMed ID: 32160373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coordination-Assisted Reversible Photoswitching of Spiropyran-Based Platinum Macrocycles.
    Bhattacharyya S; Maity M; Chowdhury A; Saha ML; Panja SK; Stang PJ; Mukherjee PS
    Inorg Chem; 2020 Feb; 59(3):2083-2091. PubMed ID: 31971781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.