These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36377869)

  • 41. Negative transcriptional regulation of the ilv-leu operon for biosynthesis of branched-chain amino acids through the Bacillus subtilis global regulator TnrA.
    Tojo S; Satomura T; Morisaki K; Yoshida K; Hirooka K; Fujita Y
    J Bacteriol; 2004 Dec; 186(23):7971-9. PubMed ID: 15547269
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL).
    Johansen LE; Nygaard P; Lassen C; Agersø Y; Saxild HH
    J Bacteriol; 2003 Sep; 185(17):5200-9. PubMed ID: 12923093
    [TBL] [Abstract][Full Text] [Related]  

  • 43. cis-acting regulatory sequences for antitermination in the transcript of the Bacillus subtilis hut operon and histidine-dependent binding of HutP to the transcript containing the regulatory sequences.
    Oda M; Kobayashi N; Ito A; Kurusu Y; Taira K
    Mol Microbiol; 2000 Mar; 35(5):1244-54. PubMed ID: 10712704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transcription-repair coupling factor is involved in carbon catabolite repression of the Bacillus subtilis hut and gnt operons.
    Zalieckas JM; Wray LV; Ferson AE; Fisher SH
    Mol Microbiol; 1998 Mar; 27(5):1031-8. PubMed ID: 9535092
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sustained Control of Pyruvate Carboxylase by the Essential Second Messenger Cyclic di-AMP in Bacillus subtilis.
    Krüger L; Herzberg C; Wicke D; Scholz P; Schmitt K; Turdiev A; Lee VT; Ischebeck T; Stülke J
    mBio; 2021 Feb; 13(1):e0360221. PubMed ID: 35130724
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis.
    Debarbouille M; Gardan R; Arnaud M; Rapoport G
    J Bacteriol; 1999 Apr; 181(7):2059-66. PubMed ID: 10094682
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular and Physiological Logics of the Pyruvate-Induced Response of a Novel Transporter in
    Charbonnier T; Le Coq D; McGovern S; Calabre M; Delumeau O; Aymerich S; Jules M
    mBio; 2017 Oct; 8(5):. PubMed ID: 28974613
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon.
    Slack FJ; Serror P; Joyce E; Sonenshein AL
    Mol Microbiol; 1995 Feb; 15(4):689-702. PubMed ID: 7783641
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Allosteric activation of HutP protein, that regulates transcription of hut operon in Bacillus subtilis, mediated by various analogs of histidine.
    Kumarevel T; Mizuno H; Kumar PK
    Nucleic Acids Res Suppl; 2003; (3):199-200. PubMed ID: 14510449
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr.
    Reizer J; Bergstedt U; Galinier A; Küster E; Saier MH; Hillen W; Steinmetz M; Deutscher J
    J Bacteriol; 1996 Sep; 178(18):5480-6. PubMed ID: 8808939
    [TBL] [Abstract][Full Text] [Related]  

  • 51. YvcK of Bacillus subtilis is required for a normal cell shape and for growth on Krebs cycle intermediates and substrates of the pentose phosphate pathway.
    Görke B; Foulquier E; Galinier A
    Microbiology (Reading); 2005 Nov; 151(Pt 11):3777-3791. PubMed ID: 16272399
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.
    Watzlawick H; Morabbi Heravi K; Altenbuchner J
    J Bacteriol; 2016 Oct; 198(20):2887-96. PubMed ID: 27501980
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and characterization of mutations conferring resistance to D-amino acids in Bacillus subtilis.
    Leiman SA; Richardson C; Foulston L; Elsholz AK; First EA; Losick R
    J Bacteriol; 2015 May; 197(9):1632-9. PubMed ID: 25733611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Negative regulation of L-arabinose metabolism in Bacillus subtilis: characterization of the araR (araC) gene.
    Sá-Nogueira I; Mota LJ
    J Bacteriol; 1997 Mar; 179(5):1598-608. PubMed ID: 9045819
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon.
    Martin-Verstraete I; Stülke J; Klier A; Rapoport G
    J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Isolation and characterization of Bacillus subtilis groE regulatory mutants: evidence for orf39 in the dnaK operon as a repressor gene in regulating the expression of both groE and dnaK.
    Yuan G; Wong SL
    J Bacteriol; 1995 Nov; 177(22):6462-8. PubMed ID: 7592421
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Bacillus subtilis iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins.
    Gaballa A; Antelmann H; Aguilar C; Khakh SK; Song KB; Smaldone GT; Helmann JD
    Proc Natl Acad Sci U S A; 2008 Aug; 105(33):11927-32. PubMed ID: 18697947
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The use of amino sugars by Bacillus subtilis: presence of a unique operon for the catabolism of glucosamine.
    Gaugué I; Oberto J; Putzer H; Plumbridge J
    PLoS One; 2013; 8(5):e63025. PubMed ID: 23667565
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The yydFGHIJ operon of Bacillus subtilis encodes a peptide that induces the LiaRS two-component system.
    Butcher BG; Lin YP; Helmann JD
    J Bacteriol; 2007 Dec; 189(23):8616-25. PubMed ID: 17921301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulation of the rhaEWRBMA Operon Involved in l-Rhamnose Catabolism through Two Transcriptional Factors, RhaR and CcpA, in Bacillus subtilis.
    Hirooka K; Kodoi Y; Satomura T; Fujita Y
    J Bacteriol; 2015 Dec; 198(5):830-45. PubMed ID: 26712933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.