These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Unraveling the molecular recognition of "three methylene spacer" bis(benzimidazolium) moiety by dibenzo-24-crown-8: pseudorotaxanes under study. Mukhopadhyay C; Ghosh S; Schmiedekamp AM Org Biomol Chem; 2012 Feb; 10(7):1434-9. PubMed ID: 22212620 [TBL] [Abstract][Full Text] [Related]
3. Structural Analysis and Inclusion Mechanism of Native and Permethylated α-Cyclodextrin-Based Rotaxanes Containing Alkylene Axles. Akae Y; Koyama Y; Sogawa H; Hayashi Y; Kawauchi S; Kuwata S; Takata T Chemistry; 2016 Apr; 22(15):5335-41. PubMed ID: 26914705 [TBL] [Abstract][Full Text] [Related]
4. Face-selective [2]- and [3]rotaxanes: kinetic control of the threading direction of cyclodextrins. Oshikiri T; Takashima Y; Yamaguchi H; Harada A Chemistry; 2007; 13(25):7091-8. PubMed ID: 17563911 [TBL] [Abstract][Full Text] [Related]
5. Study on the Influence of Chirality in the Threading of Calix[6]arene Hosts with Dialkylammonium Axles. Talotta C; Concilio G; Della Sala P; Gaeta C; Schalley CA; Neri P Molecules; 2020 Nov; 25(22):. PubMed ID: 33203070 [No Abstract] [Full Text] [Related]
6. Rotaxanes and pseudorotaxanes with Fe-, Pd- and Pt-containing axles. Molecular motion in the solid state and aggregation in solution. Suzaki Y; Taira T; Osakada K; Horie M Dalton Trans; 2008 Sep; (36):4823-33. PubMed ID: 18766211 [TBL] [Abstract][Full Text] [Related]
7. [2]Rotaxanes containing pyridinium-phosphonium axles and 24-crown-8 ether wheels. Georges N; Loeb SJ; Tiburcio J; Wisner JA Org Biomol Chem; 2004 Oct; 2(19):2751-6. PubMed ID: 15455146 [TBL] [Abstract][Full Text] [Related]
8. In the twilight zone between [2]pseudorotaxanes and [2]rotaxanes. Jeppesen JO; Vignon SA; Stoddart JF Chemistry; 2003 Oct; 9(19):4611-25. PubMed ID: 14566866 [TBL] [Abstract][Full Text] [Related]
9. Organometallic rotaxanes with a triazole group in the axle component and their behavior as ligands of PtII complexes. Yu G; Suzaki Y; Abe T; Osakada K Chem Asian J; 2012 Jan; 7(1):207-13. PubMed ID: 22034229 [TBL] [Abstract][Full Text] [Related]
10. Chelate cooperativity and spacer length effects on the assembly thermodynamics and kinetics of divalent pseudorotaxanes. Jiang W; Nowosinski K; Löw NL; Dzyuba EV; Klautzsch F; Schäfer A; Huuskonen J; Rissanen K; Schalley CA J Am Chem Soc; 2012 Jan; 134(3):1860-8. PubMed ID: 22192048 [TBL] [Abstract][Full Text] [Related]
12. Reversible 2D pseudopolyrotaxanes based on cyclodextrins and cucurbit[6]uril. Liu Y; Ke CF; Zhang HY; Wu WJ; Shi J J Org Chem; 2007 Jan; 72(1):280-3. PubMed ID: 17194112 [TBL] [Abstract][Full Text] [Related]
13. Halotriazolium axle functionalised [2]rotaxanes for anion recognition: investigating the effects of halogen-bond donor and preorganisation. Mercurio JM; Knighton RC; Cookson J; Beer PD Chemistry; 2014 Sep; 20(37):11740-9. PubMed ID: 25112862 [TBL] [Abstract][Full Text] [Related]
14. Separated and aligned molecular fibres in solid state self-assemblies of cyclodextrin [2]rotaxanes. Onagi H; Carrozzini B; Cascarano GL; Easton CJ; Edwards AJ; Lincoln SF; Rae AD Chemistry; 2003 Dec; 9(24):5971-7. PubMed ID: 14679509 [TBL] [Abstract][Full Text] [Related]
15. Monitoring self-sorting by electrospray ionization mass spectrometry: formation intermediates and error-correction during the self-assembly of multiply threaded pseudorotaxanes. Jiang W; Schäfer A; Mohr PC; Schalley CA J Am Chem Soc; 2010 Feb; 132(7):2309-20. PubMed ID: 20121186 [TBL] [Abstract][Full Text] [Related]
16. Coordination-driven self-assembly of cavity-cored multiple crown ether derivatives and poly[2]pseudorotaxanes. Ghosh K; Yang HB; Northrop BH; Lyndon MM; Zheng YR; Muddiman DC; Stang PJ J Am Chem Soc; 2008 Apr; 130(15):5320-34. PubMed ID: 18341280 [TBL] [Abstract][Full Text] [Related]
17. Pseudorotaxanes with self-sorted sequence and stereochemical orientation. Talotta C; Gaeta C; Qi Z; Schalley CA; Neri P Angew Chem Int Ed Engl; 2013 Jul; 52(29):7437-41. PubMed ID: 23740624 [TBL] [Abstract][Full Text] [Related]
18. Revisiting the formation and tunable dissociation of a [2]pseudorotaxane formed by slippage approach. Leung KC; Lau KN; Wong WY Int J Mol Sci; 2015 Apr; 16(4):8254-65. PubMed ID: 25872145 [TBL] [Abstract][Full Text] [Related]
19. The crystal structure, self-assembly, DNA-binding and cleavage studies of the [2]pseudorotaxane composed of cucurbit[6]uril. Huo FJ; Yin CX; Yang P Bioorg Med Chem Lett; 2007 Feb; 17(4):932-6. PubMed ID: 17161945 [TBL] [Abstract][Full Text] [Related]
20. A versatile template for the formation of [2]pseudorotaxanes. 1,2-Bis(pyridinium)ethane axles and 24-crown-8 ether wheels. Loeb SJ; Tiburcio J; Vella SJ; Wisner JA Org Biomol Chem; 2006 Feb; 4(4):667-80. PubMed ID: 16467941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]