These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. An artificial triazole backbone linkage provides a split-and-click strategy to bioactive chemically modified CRISPR sgRNA. Taemaitree L; Shivalingam A; El-Sagheer AH; Brown T Nat Commun; 2019 Apr; 10(1):1610. PubMed ID: 30962447 [TBL] [Abstract][Full Text] [Related]
5. Reversible RNA Acylation Using Bio-Orthogonal Chemistry Enables Temporal Control of CRISPR-Cas9 Nuclease Activity. Pandit B; Fang L; Kool ET; Royzen M ACS Chem Biol; 2024 Aug; 19(8):1719-1724. PubMed ID: 39051564 [TBL] [Abstract][Full Text] [Related]
6. RNA-Responsive gRNAs for Controlling CRISPR Activity: Current Advances, Future Directions, and Potential Applications. Pelea O; Fulga TA; Sauka-Spengler T CRISPR J; 2022 Oct; 5(5):642-659. PubMed ID: 36206027 [TBL] [Abstract][Full Text] [Related]
7. Improving Stability and Specificity of CRISPR/Cas9 System by Selective Modification of Guide RNAs with 2'-fluoro and Locked Nucleic Acid Nucleotides. Sakovina L; Vokhtantsev I; Vorobyeva M; Vorobyev P; Novopashina D Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362256 [TBL] [Abstract][Full Text] [Related]
8. Non-Chromatographic Purification of Synthetic RNA Using Bio-Orthogonal Chemistry. He M; Wu X; Mao S; Haruehanroengra P; Khan I; Sheng J; Royzen M Curr Protoc; 2021 Sep; 1(9):e247. PubMed ID: 34570433 [TBL] [Abstract][Full Text] [Related]
9. General guidelines for CRISPR/Cas-based genome editing in plants. Aksoy E; Yildirim K; Kavas M; Kayihan C; Yerlikaya BA; Çalik I; Sevgen İ; Demirel U Mol Biol Rep; 2022 Dec; 49(12):12151-12164. PubMed ID: 36107373 [TBL] [Abstract][Full Text] [Related]
10. CRISPR-Cas9 recognition of enzymatically synthesized base-modified nucleic acids. Yang H; Eremeeva E; Abramov M; Jacquemyn M; Groaz E; Daelemans D; Herdewijn P Nucleic Acids Res; 2023 Feb; 51(4):1501-1511. PubMed ID: 36611237 [TBL] [Abstract][Full Text] [Related]
11. CRISPR-Cas9-mediated pinpoint microbial genome editing aided by target-mismatched sgRNAs. Lee HJ; Kim HJ; Lee SJ Genome Res; 2020 May; 30(5):768-775. PubMed ID: 32327447 [TBL] [Abstract][Full Text] [Related]
12. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models. Zarate OA; Yang Y; Wang X; Wang JP BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480 [TBL] [Abstract][Full Text] [Related]
13. Multiplexed promoter and gene editing in wheat using a virus-based guide RNA delivery system. Wang W; Yu Z; He F; Bai G; Trick HN; Akhunova A; Akhunov E Plant Biotechnol J; 2022 Dec; 20(12):2332-2341. PubMed ID: 36070109 [TBL] [Abstract][Full Text] [Related]
14. Applications of CRISPR/Cas9 technology for modification of the plant genome. Deb S; Choudhury A; Kharbyngar B; Satyawada RR Genetica; 2022 Feb; 150(1):1-12. PubMed ID: 35018532 [TBL] [Abstract][Full Text] [Related]
15. CRISPR/Cas9-mediated genome editing in sea urchins. Lin CY; Oulhen N; Wessel G; Su YH Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015 [TBL] [Abstract][Full Text] [Related]
16. ExsgRNA: reduce off-target efficiency by on-target mismatched sgRNA. Hu WX; Rong Y; Guo Y; Jiang F; Tian W; Chen H; Dong SS; Yang TL Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580855 [TBL] [Abstract][Full Text] [Related]
17. Miniature CRISPR-Cas12f1-Mediated Single-Nucleotide Microbial Genome Editing Using 3'-Truncated sgRNA. Lee HJ; Kim HJ; Lee SJ CRISPR J; 2023 Feb; 6(1):52-61. PubMed ID: 36576897 [TBL] [Abstract][Full Text] [Related]
19. New Developments in CRISPR/Cas-based Functional Genomics and their Implications for Research Using Zebrafish. Prykhozhij SV; Caceres L; Berman JN Curr Gene Ther; 2017; 17(4):286-300. PubMed ID: 29173171 [TBL] [Abstract][Full Text] [Related]
20. Programmable RNA N Liu XM; Zhou J; Mao Y; Ji Q; Qian SB Nat Chem Biol; 2019 Sep; 15(9):865-871. PubMed ID: 31383972 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]