These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Plasma d-glutamate levels for detecting mild cognitive impairment and Alzheimer's disease: Machine learning approaches. Chang CH; Lin CH; Liu CY; Huang CS; Chen SJ; Lin WC; Yang HT; Lane HY J Psychopharmacol; 2021 Mar; 35(3):265-272. PubMed ID: 33586518 [TBL] [Abstract][Full Text] [Related]
4. Predicting Conversion from Subjective Cognitive Decline to Mild Cognitive Impairment and Alzheimer's Disease Dementia Using Ensemble Machine Learning. Dolcet-Negre MM; Imaz Aguayo L; García-de-Eulate R; Martí-Andrés G; Fernández-Matarrubia M; Domínguez P; Fernández-Seara MA; Riverol M J Alzheimers Dis; 2023; 93(1):125-140. PubMed ID: 36938735 [TBL] [Abstract][Full Text] [Related]
5. A Community-Based Study Identifying Metabolic Biomarkers of Mild Cognitive Impairment and Alzheimer's Disease Using Artificial Intelligence and Machine Learning. Yilmaz A; Ustun I; Ugur Z; Akyol S; Hu WT; Fiandaca MS; Mapstone M; Federoff H; Maddens M; Graham SF J Alzheimers Dis; 2020; 78(4):1381-1392. PubMed ID: 33164929 [TBL] [Abstract][Full Text] [Related]
6. Incremental value of biomarker combinations to predict progression of mild cognitive impairment to Alzheimer's dementia. Frölich L; Peters O; Lewczuk P; Gruber O; Teipel SJ; Gertz HJ; Jahn H; Jessen F; Kurz A; Luckhaus C; Hüll M; Pantel J; Reischies FM; Schröder J; Wagner M; Rienhoff O; Wolf S; Bauer C; Schuchhardt J; Heuser I; Rüther E; Henn F; Maier W; Wiltfang J; Kornhuber J Alzheimers Res Ther; 2017 Oct; 9(1):84. PubMed ID: 29017593 [TBL] [Abstract][Full Text] [Related]
7. Machine learning analyses identify multi-modal frailty factors that selectively discriminate four cohorts in the Alzheimer's disease spectrum: a COMPASS-ND study. Bohn L; Drouin SM; McFall GP; Rolfson DB; Andrew MK; Dixon RA BMC Geriatr; 2023 Dec; 23(1):837. PubMed ID: 38082372 [TBL] [Abstract][Full Text] [Related]
8. Olfactory Phenotypes Differentiate Cognitively Unimpaired Seniors from Alzheimer's Disease and Mild Cognitive Impairment: A Combined Machine Learning and Traditional Statistical Approach. Li J; Bur AM; Villwock MR; Shankar S; Palmer G; Sykes KJ; Villwock JA J Alzheimers Dis; 2021; 81(2):641-650. PubMed ID: 33843686 [TBL] [Abstract][Full Text] [Related]
9. Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. Ramírez J; Górriz JM; Ortiz A; Martínez-Murcia FJ; Segovia F; Salas-Gonzalez D; Castillo-Barnes D; Illán IA; Puntonet CG; J Neurosci Methods; 2018 May; 302():47-57. PubMed ID: 29242123 [TBL] [Abstract][Full Text] [Related]
10. Latent information in fluency lists predicts functional decline in persons at risk for Alzheimer disease. Clark DG; Kapur P; Geldmacher DS; Brockington JC; Harrell L; DeRamus TP; Blanton PD; Lokken K; Nicholas AP; Marson DC Cortex; 2014 Jun; 55():202-18. PubMed ID: 24556551 [TBL] [Abstract][Full Text] [Related]
11. Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts. Karikari TK; Pascoal TA; Ashton NJ; Janelidze S; Benedet AL; Rodriguez JL; Chamoun M; Savard M; Kang MS; Therriault J; Schöll M; Massarweh G; Soucy JP; Höglund K; Brinkmalm G; Mattsson N; Palmqvist S; Gauthier S; Stomrud E; Zetterberg H; Hansson O; Rosa-Neto P; Blennow K Lancet Neurol; 2020 May; 19(5):422-433. PubMed ID: 32333900 [TBL] [Abstract][Full Text] [Related]
12. A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer's Disease Spectrum. Massetti N; Russo M; Franciotti R; Nardini D; Mandolini GM; Granzotto A; Bomba M; Delli Pizzi S; Mosca A; Scherer R; Onofrj M; Sensi SL; ; J Alzheimers Dis; 2022; 85(4):1639-1655. PubMed ID: 34958014 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneity of Amyloid Binding in Cognitively Impaired Patients Consecutively Recruited from a Memory Clinic: Evaluating the Utility of Quantitative 18F-Flutemetamol PET-CT in Discrimination of Mild Cognitive Impairment from Alzheimer's Disease and Other Dementias. Bao YW; Chau ACM; Chiu PK; Shea YF; Kwan JSK; Chan FHW; Mak HK J Alzheimers Dis; 2021; 79(2):819-832. PubMed ID: 33361593 [TBL] [Abstract][Full Text] [Related]
14. Characteristics of Mild Cognitive Impairment Using the Thai Version of the Consortium to Establish a Registry for Alzheimer's Disease Tests: A Multivariate and Machine Learning Study. Tunvirachaisakul C; Supasitthumrong T; Tangwongchai S; Hemrunroj S; Chuchuen P; Tawankanjanachot I; Likitchareon Y; Phanthumchinda K; Sriswasdi S; Maes M Dement Geriatr Cogn Disord; 2018; 45(1-2):38-48. PubMed ID: 29617684 [TBL] [Abstract][Full Text] [Related]
15. Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer's disease (DELCODE). Jessen F; Spottke A; Boecker H; Brosseron F; Buerger K; Catak C; Fliessbach K; Franke C; Fuentes M; Heneka MT; Janowitz D; Kilimann I; Laske C; Menne F; Nestor P; Peters O; Priller J; Pross V; Ramirez A; Schneider A; Speck O; Spruth EJ; Teipel S; Vukovich R; Westerteicher C; Wiltfang J; Wolfsgruber S; Wagner M; Düzel E Alzheimers Res Ther; 2018 Feb; 10(1):15. PubMed ID: 29415768 [TBL] [Abstract][Full Text] [Related]
16. Association between Cerebrospinal Fluid Biomarkers for Alzheimer's Disease, APOE Genotypes and Auditory Verbal Learning Task in Subjective Cognitive Decline, Mild Cognitive Impairment, and Alzheimer's Disease. Mandecka M; Budziszewska M; Barczak A; Pepłońska B; Chodakowska-Żebrowska M; Filipek-Gliszczyńska A; Nesteruk M; Styczyńska M; Barcikowska M; Gabryelewicz T J Alzheimers Dis; 2016 Jul; 54(1):157-68. PubMed ID: 27472875 [TBL] [Abstract][Full Text] [Related]
17. Application of Machine Learning to Arterial Spin Labeling in Mild Cognitive Impairment and Alzheimer Disease. Collij LE; Heeman F; Kuijer JP; Ossenkoppele R; Benedictus MR; Möller C; Verfaillie SC; Sanz-Arigita EJ; van Berckel BN; van der Flier WM; Scheltens P; Barkhof F; Wink AM Radiology; 2016 Dec; 281(3):865-875. PubMed ID: 27383395 [TBL] [Abstract][Full Text] [Related]
18. Use of Cerebrospinal Fluid Biomarkers of Alzheimer's Disease Risk in Mild Cognitive Impairment and Subjective Cognitive Decline in Routine Clinical Care in Germany. Bartels C; Kögel A; Schweda M; Wiltfang J; Pentzek M; Schicktanz S; Schneider A J Alzheimers Dis; 2020; 78(3):1137-1148. PubMed ID: 33104034 [TBL] [Abstract][Full Text] [Related]
19. Multivariate Data Analysis and Machine Learning for Prediction of MCI-to-AD Conversion. Skolariki K; Terrera GM; Danso S Adv Exp Med Biol; 2020; 1194():81-103. PubMed ID: 32468526 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning and Risk Score Classification of Mild Cognitive Impairment and Alzheimer's Disease. Nagaraj S; Duong TQ J Alzheimers Dis; 2021; 80(3):1079-1090. PubMed ID: 33646166 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]