These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 36378559)
21. Unveiling the sound of the cognitive status: Machine Learning-based speech analysis in the Alzheimer's disease spectrum. García-Gutiérrez F; Alegret M; Marquié M; Muñoz N; Ortega G; Cano A; De Rojas I; García-González P; Olivé C; Puerta R; García-Sanchez A; Capdevila-Bayo M; Montrreal L; Pytel V; Rosende-Roca M; Zaldua C; Gabirondo P; Tárraga L; Ruiz A; Boada M; Valero S Alzheimers Res Ther; 2024 Feb; 16(1):26. PubMed ID: 38308366 [TBL] [Abstract][Full Text] [Related]
22. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Dimitriadis SI; Liparas D; Tsolaki MN; J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320 [TBL] [Abstract][Full Text] [Related]
23. Automated Classification of Cognitive Decline and Probable Alzheimer's Dementia Across Multiple Speech and Language Domains. He R; Chapin K; Al-Tamimi J; Bel N; Marquié M; Rosende-Roca M; Pytel V; Tartari JP; Alegret M; Sanabria A; Ruiz A; Boada M; Valero S; Hinzen W Am J Speech Lang Pathol; 2023 Sep; 32(5):2075-2086. PubMed ID: 37486774 [TBL] [Abstract][Full Text] [Related]
24. Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease. Bron EE; Klein S; Papma JM; Jiskoot LC; Venkatraghavan V; Linders J; Aalten P; De Deyn PP; Biessels GJ; Claassen JAHR; Middelkoop HAM; Smits M; Niessen WJ; van Swieten JC; van der Flier WM; Ramakers IHGB; van der Lugt A; ; Neuroimage Clin; 2021; 31():102712. PubMed ID: 34118592 [TBL] [Abstract][Full Text] [Related]
25. Machine Learning Analysis of Digital Clock Drawing Test Performance for Differential Classification of Mild Cognitive Impairment Subtypes Versus Alzheimer's Disease. Binaco R; Calzaretto N; Epifano J; McGuire S; Umer M; Emrani S; Wasserman V; Libon DJ; Polikar R J Int Neuropsychol Soc; 2020 Aug; 26(7):690-700. PubMed ID: 32200771 [TBL] [Abstract][Full Text] [Related]
26. Classifications of Neurodegenerative Disorders Using a Multiplex Blood Biomarkers-Based Machine Learning Model. Lin CH; Chiu SI; Chen TF; Jang JR; Chiu MJ Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32967146 [TBL] [Abstract][Full Text] [Related]
27. Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer's Disease and mild cognitive impairment identification. Liu F; Wee CY; Chen H; Shen D Neuroimage; 2014 Jan; 84():466-75. PubMed ID: 24045077 [TBL] [Abstract][Full Text] [Related]
28. Decision tree-based classification as a support to diagnosis in the Alzheimer's disease continuum using cerebrospinal fluid biomarkers: insights from automated analysis. Costa A; Pais M; Loureiro J; Stella F; Radanovic M; Gattaz W; Forlenza O; Talib L Braz J Psychiatry; 2022 Aug; 44(4):370-377. PubMed ID: 35739065 [TBL] [Abstract][Full Text] [Related]
29. Development of multivariable prediction models for institutionalization and mortality in the full spectrum of Alzheimer's disease. Mank A; van Maurik IS; Rijnhart JJM; Bakker ED; Bouteloup V; Le Scouarnec L; Teunissen CE; Barkhof F; Scheltens P; Berkhof J; van der Flier WM Alzheimers Res Ther; 2022 Aug; 14(1):110. PubMed ID: 35932034 [TBL] [Abstract][Full Text] [Related]
30. Specific Nutritional Biomarker Profiles in Mild Cognitive Impairment and Subjective Cognitive Decline Are Associated With Clinical Progression: The NUDAD Project. de Leeuw FA; van der Flier WM; Tijms BM; Scheltens P; Mendes VM; Manadas B; Bierau J; van Wijk N; van den Heuvel EGHM; Mohajeri MH; Teunissen CE; Kester MI J Am Med Dir Assoc; 2020 Oct; 21(10):1513.e1-1513.e17. PubMed ID: 32001171 [TBL] [Abstract][Full Text] [Related]
31. Cerebrospinal fluid N-224 tau helps discriminate Alzheimer's disease from subjective cognitive decline and other dementias. Cicognola C; Hansson O; Scheltens P; Kvartsberg H; Zetterberg H; Teunissen CE; Blennow K Alzheimers Res Ther; 2021 Feb; 13(1):38. PubMed ID: 33557920 [TBL] [Abstract][Full Text] [Related]
33. Comparison of machine learning algorithms for predicting cognitive impairment using neuropsychological tests. Simfukwe C; A An SS; Youn YC Appl Neuropsychol Adult; 2024 Sep; ():1-12. PubMed ID: 39248700 [TBL] [Abstract][Full Text] [Related]
34. Comparing different algorithms for the course of Alzheimer's disease using machine learning. Tang X; Liu J Ann Palliat Med; 2021 Sep; 10(9):9715-9724. PubMed ID: 34628897 [TBL] [Abstract][Full Text] [Related]
35. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease. Khazaee A; Ebrahimzadeh A; Babajani-Feremi A Brain Imaging Behav; 2016 Sep; 10(3):799-817. PubMed ID: 26363784 [TBL] [Abstract][Full Text] [Related]
37. Decreasing body mass index is associated with cerebrospinal fluid markers of Alzheimer's pathology in MCI and mild dementia. Mathys J; Gholamrezaee M; Henry H; von Gunten A; Popp J Exp Gerontol; 2017 Dec; 100():45-53. PubMed ID: 29054536 [TBL] [Abstract][Full Text] [Related]
38. Early dementia diagnosis, MCI-to-dementia risk prediction, and the role of machine learning methods for feature extraction from integrated biomarkers, in particular for EEG signal analysis. Rossini PM; Miraglia F; Vecchio F Alzheimers Dement; 2022 Dec; 18(12):2699-2706. PubMed ID: 35388959 [TBL] [Abstract][Full Text] [Related]
40. Random-Forest-Algorithm-Based Applications of the Basic Characteristics and Serum and Imaging Biomarkers to Diagnose Mild Cognitive Impairment. Yang J; Sui H; Jiao R; Zhang M; Zhao X; Wang L; Deng W; Liu X Curr Alzheimer Res; 2022; 19(1):76-83. PubMed ID: 35088670 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]