These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Gaussian synapses for probabilistic neural networks. Sebastian A; Pannone A; Subbulakshmi Radhakrishnan S; Das S Nat Commun; 2019 Sep; 10(1):4199. PubMed ID: 31519885 [TBL] [Abstract][Full Text] [Related]
7. Artificial Neuron and Synapse Devices Based on 2D Materials. Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985 [TBL] [Abstract][Full Text] [Related]
8. Memristive and CMOS Devices for Neuromorphic Computing. Milo V; Malavena G; Monzio Compagnoni C; Ielmini D Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906325 [TBL] [Abstract][Full Text] [Related]
9. Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics. Huh W; Lee D; Lee CH Adv Mater; 2020 Dec; 32(51):e2002092. PubMed ID: 32985042 [TBL] [Abstract][Full Text] [Related]
10. SiC@NiO Core-Shell Nanowire Networks-Based Optoelectronic Synapses for Neuromorphic Computing and Visual Systems at High Temperature. Shen W; Wang P; Wei G; Yuan S; Chen M; Su Y; Xu B; Li G Small; 2024 Aug; 20(34):e2400458. PubMed ID: 38607289 [TBL] [Abstract][Full Text] [Related]
11. Dual-Ferroelectric-Coupling-Engineered Two-Dimensional Transistors for Multifunctional In-Memory Computing. Luo ZD; Zhang S; Liu Y; Zhang D; Gan X; Seidel J; Liu Y; Han G; Alexe M; Hao Y ACS Nano; 2022 Feb; 16(2):3362-3372. PubMed ID: 35147405 [TBL] [Abstract][Full Text] [Related]
13. Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition. Xue S; Wang S; Wu T; Di Z; Xu N; Sun Y; Zeng C; Ma S; Zhou P Sci Bull (Beijing); 2023 Oct; 68(20):2336-2343. PubMed ID: 37714804 [TBL] [Abstract][Full Text] [Related]
14. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics. Lee Y; Lee TW Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916 [TBL] [Abstract][Full Text] [Related]
15. Reconfigurable MoS Yuan J; Liu SE; Shylendra A; Gaviria Rojas WA; Guo S; Bergeron H; Li S; Lee HS; Nasrin S; Sangwan VK; Trivedi AR; Hersam MC Nano Lett; 2021 Aug; 21(15):6432-6440. PubMed ID: 34283622 [TBL] [Abstract][Full Text] [Related]
16. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670 [TBL] [Abstract][Full Text] [Related]
17. Hydrogel-Based Artificial Synapses for Sustainable Neuromorphic Electronics. Yan J; Armstrong JPK; Scarpa F; Perriman AW Adv Mater; 2024 Sep; 36(38):e2403937. PubMed ID: 39087845 [TBL] [Abstract][Full Text] [Related]
18. Two-dimensional materials for synaptic electronics and neuromorphic systems. Wang S; Zhang DW; Zhou P Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765 [TBL] [Abstract][Full Text] [Related]
19. Tunable Resistive Switching in 2D MXene Ti Zhang X; Chen H; Cheng S; Guo F; Jie W; Hao J ACS Appl Mater Interfaces; 2022 Oct; 14(39):44614-44621. PubMed ID: 36136123 [TBL] [Abstract][Full Text] [Related]
20. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges. Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S Front Neurosci; 2020; 14():634. PubMed ID: 32670012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]