BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36379006)

  • 1. Improved Production of Fengycin in
    Gao GR; Hou ZJ; Ding MZ; Bai S; Wei SY; Qiao B; Xu QM; Cheng JS; Yuan YJ
    ACS Synth Biol; 2022 Dec; 11(12):4065-4076. PubMed ID: 36379006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis.
    Vahidinasab M; Lilge L; Reinfurt A; Pfannstiel J; Henkel M; Morabbi Heravi K; Hausmann R
    Microb Cell Fact; 2020 Nov; 19(1):205. PubMed ID: 33167976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production.
    Yaseen Y; Gancel F; Béchet M; Drider D; Jacques P
    Arch Microbiol; 2017 Dec; 199(10):1371-1382. PubMed ID: 28735377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of fengycin from D-xylose through the expression and metabolic regulation of the Dahms pathway.
    Gao W; Yin Y; Wang P; Tan W; He M; Wen J
    Appl Microbiol Biotechnol; 2022 Apr; 106(7):2557-2567. PubMed ID: 35362719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of
    Yin Y; Wang P; Wang X; Wen J
    Front Microbiol; 2023; 14():1342199. PubMed ID: 38249479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of promoters on the production of fengycin in Bacillus spp.
    Yaseen Y; Gancel F; Drider D; Béchet M; Jacques P
    Res Microbiol; 2016 May; 167(4):272-281. PubMed ID: 26912322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ enhancement of surfactin biosynthesis in Bacillus subtilis using novel artificial inducible promoters.
    Jiao S; Li X; Yu H; Yang H; Li X; Shen Z
    Biotechnol Bioeng; 2017 Apr; 114(4):832-842. PubMed ID: 27723092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis.
    Yaseen Y; Diop A; Gancel F; Béchet M; Jacques P; Drider D
    Arch Microbiol; 2018 Jul; 200(5):783-791. PubMed ID: 29423562
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Engineered Microbial Consortium Provides Precursors for Fengycin Production by
    Wei SY; Gao GR; Ding MZ; Cao CY; Hou ZJ; Cheng JS; Yuan YJ
    J Nat Prod; 2024 Jan; 87(1):28-37. PubMed ID: 38204395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2.
    Su Z; Chen X; Liu X; Guo Q; Li S; Lu X; Zhang X; Wang P; Dong L; Zhao W; Ma P
    BMC Genomics; 2020 Nov; 21(1):767. PubMed ID: 33153447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematically engineering the biosynthesis of a green biosurfactant surfactin by Bacillus subtilis 168.
    Wu Q; Zhi Y; Xu Y
    Metab Eng; 2019 Mar; 52():87-97. PubMed ID: 30453038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Biofilm Modification and Transcriptional Analysis for Improving Fengycin Production in Bacillus amyloliquefaciens.
    Cao CY; Hou ZJ; Ding MZ; Gao GR; Qiao B; Wei SY; Cheng JS
    Probiotics Antimicrob Proteins; 2024 Apr; ():. PubMed ID: 38652228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering of the precursor supply pathway for the overproduction of the nC
    Hu F; Cai W; Lin J; Wang W; Li S
    Microb Cell Fact; 2021 May; 20(1):96. PubMed ID: 33964901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease.
    Fan H; Ru J; Zhang Y; Wang Q; Li Y
    Microbiol Res; 2017 Jun; 199():89-97. PubMed ID: 28454713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DegQ regulates the production of fengycins and biofilm formation of the biocontrol agent Bacillus subtilis NCD-2.
    Wang P; Guo Q; Ma Y; Li S; Lu X; Zhang X; Ma P
    Microbiol Res; 2015 Sep; 178():42-50. PubMed ID: 26302846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational strain improvement for surfactin production: enhancing the yield and generating novel structures.
    Hu F; Liu Y; Li S
    Microb Cell Fact; 2019 Feb; 18(1):42. PubMed ID: 30819187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation.
    Zhang L; Sun C
    Appl Environ Microbiol; 2018 Sep; 84(18):. PubMed ID: 29980550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three non-aspartate amino acid mutations in the ComA Response regulator receiver motif severely decrease surfactin production, competence development and spore formation in Bacillus subtilis.
    Wang X; Luo C; Liu Y; Nie Y; Liu Y; Zhang R; Chen Z
    J Microbiol Biotechnol; 2010 Feb; 20(2):301-10. PubMed ID: 20208433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides.
    Kim PI; Ryu J; Kim YH; Chi YT
    J Microbiol Biotechnol; 2010 Jan; 20(1):138-45. PubMed ID: 20134245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of B. subtilis 3NA mutations in spo0A and abrB on surfactin production in B. subtilis 168.
    Klausmann P; Lilge L; Aschern M; Hennemann K; Henkel M; Hausmann R; Morabbi Heravi K
    Microb Cell Fact; 2021 Sep; 20(1):188. PubMed ID: 34565366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.