These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 36379010)
1. Zirconium Carbide Mediates Coke-Resistant Methane Dry Reforming on Nickel-Zirconium Catalysts. Haug L; Thurner C; Bekheet MF; Bischoff B; Gurlo A; Kunz M; Sartory B; Penner S; Klötzer B Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202213249. PubMed ID: 36379010 [TBL] [Abstract][Full Text] [Related]
2. Surface Spectroscopy on UHV-Grown and Technological Ni-ZrO Anic K; Wolfbeisser A; Li H; Rameshan C; Föttinger K; Bernardi J; Rupprechter G Top Catal; 2016; 59(17):1614-1627. PubMed ID: 28035177 [TBL] [Abstract][Full Text] [Related]
3. Utilization of greenhouse gases through dry reforming: screening of nickel-based bimetallic catalysts and kinetic studies. Fan MS; Abdullah AZ; Bhatia S ChemSusChem; 2011 Nov; 4(11):1643-53. PubMed ID: 22191096 [TBL] [Abstract][Full Text] [Related]
4. Highly coke-resistant ni nanoparticle catalysts with minimal sintering in dry reforming of methane. Han JW; Kim C; Park JS; Lee H ChemSusChem; 2014 Feb; 7(2):451-6. PubMed ID: 24402833 [TBL] [Abstract][Full Text] [Related]
5. Effect of Adding Gadolinium Oxide Promoter on Nickel Catalyst over Yttrium-Zirconium Oxide Support for Dry Reforming of Methane. Alreshaidan SB; Al-Fatesh A; Lanre MS; Alanazi YM; Ibrahim AA; Fakeeha AH; Albaqi F; Anojaidi K; Bagabas A Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770167 [TBL] [Abstract][Full Text] [Related]
6. Ni Sheng K; Luan D; Jiang H; Zeng F; Wei B; Pang F; Ge J ACS Appl Mater Interfaces; 2019 Jul; 11(27):24078-24087. PubMed ID: 31194503 [TBL] [Abstract][Full Text] [Related]
7. Impact of preparation method on nickel speciation and methane dry reforming performance of Ni/SiO Chen C; Wang W; Ren Q; Ye R; Nie N; Liu Z; Zhang L; Xiao J Front Chem; 2022; 10():993691. PubMed ID: 36118307 [TBL] [Abstract][Full Text] [Related]
8. In situ NAP-XPS spectroscopy during methane dry reforming on ZrO Rameshan C; Li H; Anic K; Roiaz M; Pramhaas V; Rameshan R; Blume R; Hävecker M; Knudsen J; Knop-Gericke A; Rupprechter G J Phys Condens Matter; 2018 Jul; 30(26):264007. PubMed ID: 29786619 [TBL] [Abstract][Full Text] [Related]
9. Recent Progresses in the Design and Fabrication of Highly Efficient Ni-Based Catalysts With Advanced Catalytic Activity and Enhanced Anti-coke Performance Toward CO Wu X; Xu L; Chen M; Lv C; Wen X; Cui Y; Wu CE; Yang B; Miao Z; Hu X Front Chem; 2020; 8():581923. PubMed ID: 33195071 [TBL] [Abstract][Full Text] [Related]
10. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide. Hao ZP; Hu C; Jiang Z; Lu GQ J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662 [TBL] [Abstract][Full Text] [Related]
11. Partial Oxidation of Bio-methane over Nickel Supported on MgO-ZrO Asencios YJO; Yigit N; Wicht T; Stöger-Pollach M; Lucrédio AF; Marcos FCF; Assaf EM; Rupprechter G Top Catal; 2023; 66(19-20):1539-1552. PubMed ID: 37830054 [TBL] [Abstract][Full Text] [Related]
12. Improving Anti-Coking Properties of Ni/Al Shi Y; Wang S; Li Y; Yang F; Yu H; Chu Y; Li T; Yin H Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591379 [TBL] [Abstract][Full Text] [Related]
13. Ni-Co bimetallic catalysts on coconut shell activated carbon prepared using solid-phase method for highly efficient dry reforming of methane. Li L; Chen J; Zhang Y; Sun J; Zou G Environ Sci Pollut Res Int; 2022 May; 29(25):37685-37699. PubMed ID: 35066826 [TBL] [Abstract][Full Text] [Related]
14. Promotional effect of magnesium oxide for a stable nickel-based catalyst in dry reforming of methane. Al-Fatesh AS; Kumar R; Fakeeha AH; Kasim SO; Khatri J; Ibrahim AA; Arasheed R; Alabdulsalam M; Lanre MS; Osman AI; Abasaeed AE; Bagabas A Sci Rep; 2020 Aug; 10(1):13861. PubMed ID: 32807834 [TBL] [Abstract][Full Text] [Related]
16. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Akri M; Zhao S; Li X; Zang K; Lee AF; Isaacs MA; Xi W; Gangarajula Y; Luo J; Ren Y; Cui YT; Li L; Su Y; Pan X; Wen W; Pan Y; Wilson K; Li L; Qiao B; Ishii H; Liao YF; Wang A; Wang X; Zhang T Nat Commun; 2019 Nov; 10(1):5181. PubMed ID: 31729358 [TBL] [Abstract][Full Text] [Related]
17. Zirconium-Assisted Activation of Palladium To Boost Syngas Production by Methane Dry Reforming. Köpfle N; Götsch T; Grünbacher M; Carbonio EA; Hävecker M; Knop-Gericke A; Schlicker L; Doran A; Kober D; Gurlo A; Penner S; Klötzer B Angew Chem Int Ed Engl; 2018 Oct; 57(44):14613-14618. PubMed ID: 30179293 [TBL] [Abstract][Full Text] [Related]
18. High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane. Al-Doghachi FA; Islam A; Zainal Z; Saiman MI; Embong Z; Taufiq-Yap YH PLoS One; 2016; 11(1):e0145862. PubMed ID: 26745623 [TBL] [Abstract][Full Text] [Related]
19. One-Step Solvothermal Synthesis of Ni Nanoparticle Catalysts Embedded in ZrO Meiliefiana M; Nakayashiki T; Yamamoto E; Hayashi K; Ohtani M; Kobiro K Nanoscale Res Lett; 2022 Apr; 17(1):47. PubMed ID: 35435525 [TBL] [Abstract][Full Text] [Related]
20. Simple mechanisms of CH Yang H; Wang H; Wei L; Yang Y; Li YW; Wen XD; Jiao H Phys Chem Chem Phys; 2021 Dec; 23(46):26392-26400. PubMed ID: 34792065 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]