These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36379012)

  • 41. Mechanistic Studies on Dehydration in Class V Lanthipeptides.
    Liang H; Lopez IJ; Sánchez-Hidalgo M; Genilloud O; van der Donk WA
    ACS Chem Biol; 2022 Sep; 17(9):2519-2527. PubMed ID: 36044589
    [TBL] [Abstract][Full Text] [Related]  

  • 42. One-pot synthesis of class II lanthipeptide bovicin HJ50 via an engineered lanthipeptide synthetase.
    Wang J; Ge X; Zhang L; Teng K; Zhong J
    Sci Rep; 2016 Dec; 6():38630. PubMed ID: 27924934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deciphering the Biosynthesis of Novel Class I Lanthipeptides from Marine
    Wang X; Wang Z; Dong Z; Yan Y; Zhang Y; Huo L
    ACS Chem Biol; 2023 May; 18(5):1218-1227. PubMed ID: 37162177
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Streptocollin, a Type IV Lanthipeptide Produced by Streptomyces collinus Tü 365.
    Iftime D; Jasyk M; Kulik A; Imhoff JF; Stegmann E; Wohlleben W; Süssmuth RD; Weber T
    Chembiochem; 2015 Dec; 16(18):2615-23. PubMed ID: 26437689
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structure and mechanism of lanthipeptide biosynthetic enzymes.
    van der Donk WA; Nair SK
    Curr Opin Struct Biol; 2014 Dec; 29():58-66. PubMed ID: 25460269
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A price to pay for relaxed substrate specificity: a comparative kinetic analysis of the class II lanthipeptide synthetases ProcM and HalM2.
    Thibodeaux CJ; Ha T; van der Donk WA
    J Am Chem Soc; 2014 Dec; 136(50):17513-29. PubMed ID: 25409537
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insights into the Biosynthesis of Duramycin.
    Huo L; Ökesli A; Zhao M; van der Donk WA
    Appl Environ Microbiol; 2017 Feb; 83(3):. PubMed ID: 27864176
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Substrate Sequence Controls Regioselectivity of Lanthionine Formation by ProcM.
    Le T; Jeanne Dit Fouque K; Santos-Fernandez M; Navo CD; Jiménez-Osés G; Sarksian R; Fernandez-Lima FA; van der Donk WA
    J Am Chem Soc; 2021 Nov; 143(44):18733-18743. PubMed ID: 34724611
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Discovery and Characterization of Marinsedin, a New Class II Lanthipeptide Derived from Marine Bacterium
    Han Y; Wang X; Zhang Y; Huo L
    ACS Chem Biol; 2022 Apr; 17(4):785-790. PubMed ID: 35293716
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Linaridin natural products.
    Ma S; Zhang Q
    Nat Prod Rep; 2020 Sep; 37(9):1152-1163. PubMed ID: 32484193
    [TBL] [Abstract][Full Text] [Related]  

  • 51. RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links.
    Agrawal P; Khater S; Gupta M; Sain N; Mohanty D
    Nucleic Acids Res; 2017 Jul; 45(W1):W80-W88. PubMed ID: 28499008
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hijacking a Linaridin Biosynthetic Intermediate for Lanthipeptide Production.
    Chu L; Cheng J; Zhou C; Mo T; Ji X; Zhu T; Chen J; Ma S; Gao J; Zhang Q
    ACS Chem Biol; 2022 Nov; 17(11):3198-3206. PubMed ID: 36288500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improving the attrition rate of Lanthipeptide discovery for commercial applications.
    Geng M; Smith L
    Expert Opin Drug Discov; 2018 Feb; 13(2):155-167. PubMed ID: 29195488
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Discovery and Characterization of a Myxobacterial Lanthipeptide with Unique Biosynthetic Features and Anti-inflammatory Activity.
    Wang X; Chen X; Wang ZJ; Zhuang M; Zhong L; Fu C; Garcia R; Müller R; Zhang Y; Yan J; Wu D; Huo L
    J Am Chem Soc; 2023 Aug; 145(30):16924-16937. PubMed ID: 37466996
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Semi-in vitro biosynthesis of cryptic lanthipeptide CLA 124 from Streptomyces clavuligerus].
    Zhang Z; Zhang L; Zhang J; Ma H; Sun S; Zhong J
    Wei Sheng Wu Xue Bao; 2015 Nov; 55(11):1402-8. PubMed ID: 26915221
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nine post-translational modifications during the biosynthesis of cinnamycin.
    Ökesli A; Cooper LE; Fogle EJ; van der Donk WA
    J Am Chem Soc; 2011 Aug; 133(34):13753-60. PubMed ID: 21770392
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of the stereochemical configuration of lanthionines formed by the lanthipeptide synthetase GeoM.
    Garg N; Goto Y; Chen T; van der Donk WA
    Biopolymers; 2016 Nov; 106(6):834-842. PubMed ID: 27178086
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bioinformatic Mapping of Radical S-Adenosylmethionine-Dependent Ribosomally Synthesized and Post-Translationally Modified Peptides Identifies New Cα, Cβ, and Cγ-Linked Thioether-Containing Peptides.
    Hudson GA; Burkhart BJ; DiCaprio AJ; Schwalen CJ; Kille B; Pogorelov TV; Mitchell DA
    J Am Chem Soc; 2019 May; 141(20):8228-8238. PubMed ID: 31059252
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of Leader Processing Shows That Partially Processed Mersacidin Is Activated by AprE After Export.
    Viel JH; van Tilburg AY; Kuipers OP
    Front Microbiol; 2021; 12():765659. PubMed ID: 34777321
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.