These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36379314)

  • 1. Electrical stimulation enhances the neuronal differentiation of neural stem cells in three-dimensional conductive scaffolds through the voltage-gated calcium ion channel.
    Wang S; Guan S; Sun C; Liu H; Liu T; Ma X
    Brain Res; 2023 Jan; 1798():148163. PubMed ID: 36379314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering.
    Wang S; Guan S; Li W; Ge D; Xu J; Sun C; Liu T; Ma X
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():890-901. PubMed ID: 30274126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical stimulation of adipose-derived mesenchymal stem cells in conductive scaffolds and the roles of voltage-gated ion channels.
    Zhang J; Li M; Kang ET; Neoh KG
    Acta Biomater; 2016 Mar; 32():46-56. PubMed ID: 26703122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategy for Designing a Cell Scaffold to Enable Wireless Electrical Stimulation for Enhanced Neuronal Differentiation of Stem Cells.
    Han F; Ma X; Zhai Y; Cui L; Yang L; Zhu Z; Hao Y; Cheng G
    Adv Healthc Mater; 2021 Jun; 10(11):e2100027. PubMed ID: 33887103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering.
    Wang S; Guan S; Xu J; Li W; Ge D; Sun C; Liu T; Ma X
    Biomater Sci; 2017 Sep; 5(10):2024-2034. PubMed ID: 28894864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carboxymethyl Chitosan and Gelatin Hydrogel Scaffolds Incorporated with Conductive PEDOT Nanoparticles for Improved Neural Stem Cell Proliferation and Neuronal Differentiation.
    Guan S; Wang Y; Xie F; Wang S; Xu W; Xu J; Sun C
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive Substrates Promotes Neural Priming.
    Eftekhari BS; Song D; Janmey PA
    Macromol Biosci; 2023 Dec; 23(12):e2300149. PubMed ID: 37571815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibited astrocytic differentiation in neural stem cell-laden 3D bioprinted conductive composite hydrogel scaffolds for repair of spinal cord injury.
    Song S; Li Y; Huang J; Cheng S; Zhang Z
    Biomater Adv; 2023 May; 148():213385. PubMed ID: 36934714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioinspired Nanofiber Scaffold for Differentiating Bone Marrow-Derived Neural Stem Cells to Oligodendrocyte-Like Cells: Design, Fabrication, and Characterization.
    Rasti Boroojeni F; Mashayekhan S; Abbaszadeh HA; Ansarizadeh M; Khoramgah MS; Rahimi Movaghar V
    Int J Nanomedicine; 2020; 15():3903-3920. PubMed ID: 32606657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation.
    Song S; Liu X; Huang J; Zhang Z
    Biomater Adv; 2022 Feb; 133():112639. PubMed ID: 35527143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair.
    Liu X; Song S; Chen Z; Gao C; Li Y; Luo Y; Huang J; Zhang Z
    Acta Biomater; 2022 Oct; 151():148-162. PubMed ID: 36002129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation.
    Tomaskovic-Crook E; Zhang P; Ahtiainen A; Kaisvuo H; Lee CY; Beirne S; Aqrawe Z; Svirskis D; Hyttinen J; Wallace GG; Travas-Sejdic J; Crook JM
    Adv Healthc Mater; 2019 Aug; 8(15):e1900425. PubMed ID: 31168967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directly Induced Neural Differentiation of Human Adipose-Derived Stem Cells Using Three-Dimensional Culture System of Conductive Microwell with Electrical Stimulation.
    Heo DN; Acquah N; Kim J; Lee SJ; Castro NJ; Zhang LG
    Tissue Eng Part A; 2018 Apr; 24(7-8):537-545. PubMed ID: 28741412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation.
    Zhu W; Ye T; Lee SJ; Cui H; Miao S; Zhou X; Shuai D; Zhang LG
    Nanomedicine; 2018 Oct; 14(7):2485-2494. PubMed ID: 28552650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy between 3D-extruded electroconductive scaffolds and electrical stimulation to improve bone tissue engineering strategies.
    Silva JC; Marcelino P; Meneses J; Barbosa F; Moura CS; Marques AC; Cabral JMS; Pascoal-Faria P; Alves N; Morgado J; Ferreira FC; Garrudo FFF
    J Mater Chem B; 2024 Mar; 12(11):2771-2794. PubMed ID: 38384239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conductive electrospun scaffolds with electrical stimulation for neural differentiation of conjunctiva mesenchymal stem cells.
    Rahmani A; Nadri S; Kazemi HS; Mortazavi Y; Sojoodi M
    Artif Organs; 2019 Aug; 43(8):780-790. PubMed ID: 30674064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation.
    Fu C; Pan S; Ma Y; Kong W; Qi Z; Yang X
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):1867-1876. PubMed ID: 31076002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micropatterned conductive electrospun nanofiber mesh combined with electrical stimulation for synergistically enhancing differentiation of rat neural stem cells.
    Yan H; Wang Y; Li L; Zhou X; Shi X; Wei Y; Zhang P
    J Mater Chem B; 2020 Apr; 8(13):2673-2688. PubMed ID: 32147674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Porous chitosan scaffold and ngf promote neuronal differentiation of neural stem cells in vitro.
    Yi X; Jin G; Tian M; Mao W; Qin J
    Neuro Endocrinol Lett; 2011; 32(5):705-10. PubMed ID: 22167147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rational design of a highly porous electronic scaffold with concurrent enhancement in cell behaviors and differentiation under electrical stimulation.
    Chen FJ; Hsiao YS; Liao IH; Liu CT; Wu PI; Lin CY; Cheng NC; Yu J
    J Mater Chem B; 2021 Sep; 9(37):7674-7685. PubMed ID: 34586139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.